MATH 320, Intro. to Topology, Spring 2024 Exam II by Scott Wilson

Name: _____

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using. (1) Let $X = \{a, b, c\}$ and consider the following three topologies on X,

$$C_{1} = \{\emptyset, X, \{a\}, \{b, c\}\}\$$

$$C_{2} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\}\$$

$$C_{3} = \{\emptyset, X, \{a, b\}, \{c\}\}.$$

(a) Is C_1 finer than C_2 ?

No, for example $\{b\} \in \mathcal{C}_2$, but $\{b\} \notin \mathcal{C}_1$, so $\mathcal{C}_2 \nsubseteq \mathcal{C}_1$.

(b) What is $\mathcal{C}_2 \cap \mathcal{C}_3$? Is this a topology on X?

$$\mathcal{C}_2 \cap \mathcal{C}_3 = \{\emptyset, X, \{a, b\}\}$$

This is a topology on X since it contains \emptyset and X, and is closed under arbitrary unions and finite intersections.

(c) What is $\mathcal{C}_1 \cup \mathcal{C}_3$? Is this a topology on X?

 $\mathcal{C}_1 \cup \mathcal{C}_3 = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b\}, \{c\}\}$

This is not a topology on X since is not closed under finite intersections (e.g. $\{b, c\} \cap \{a, b\} = \{b\} \notin C_1 \cup C_3$), nor is it closed under unions (e.g. $\{a\} \cup \{c\} = \{a, c\} \notin C_1 \cup C_3$).

(2) Consider the following subsets of the topological space R (with its standard topology). For each of the following subsets, determine if it is open, closed, neither, or both, and explain your reasoning. Let Z denote the integers, and Q denote the rationals.
(a) [1,5)

This set is not open or closed. It is not open since no interval containing 1 is contained in the set. Similarly, the complement is not open since no interval containing 5 is contained in the complement.

(b) $\mathbb{R} - \mathbb{Z}$

This set is open since it is the union of all open intervals of the form (n, n + 1) for $n \in \mathbb{Z}$. It is not closed since the complement \mathbb{Z} is not open (by the same argument as in the previous part).

(c) \mathbb{Q}

This set is not open by the same argument as the first part. It is also not closed by the same argument applied to the complement $\mathbb{R} - \mathbb{Q}$. (Concisely, every open interval contains both rational and irrational numbers).

(3) Do each part. You must explain your answer for full credit.(a) What is the closure of Q in R?

The closure of \mathbb{Q} is \mathbb{R} , since any open interval containing a given real number also contains a rational number.

(b) What is the interior of $[-1, 0) \cup (0, 3)$ in \mathbb{R} .

The interior is $(-1,0) \cup (0,3)$. This is an open set contained in the given set and no open set contained in the given set can contain -1.

(c) What is the closure of the set $\{x \mid \frac{1}{x} \in \mathbb{Z}\}$ in \mathbb{R} ? What is the interior?

The closure of this set is $\{x \mid \frac{1}{x} \in \mathbb{Z}\} \cup \{0\}$, since 0 is the only limit point of $\{x \mid \frac{1}{x} \in \mathbb{Z}\}$ that is not contained in $\{x \mid \frac{1}{x} \in \mathbb{Z}\}$. The interior is empty.

- (4) Let X be a set. Do both parts.
 - (a) Define what is a basis for a topology on X.

A basis for a topology on X is a collection \mathcal{B} of subsets of X such that

- (i) For all $x \in X$, $x \in B$ for some $B \in \mathcal{B}$.
- (ii) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.
- (b) Let \mathcal{B} be the collection of all subsets of X which contain exactly one element:

 $\mathcal{B} = \{ B \subseteq X \mid B \text{ has one element} \}.$

Show that the topology generated by \mathcal{B} is the discrete topology, i.e. every subset of X is open in this topology. (You do not have to prove \mathcal{B} is a basis, but you can if you want).

Recall the topology $C_{\mathcal{B}}$ generated by a basis \mathcal{B} consists of all unions of elements of \mathcal{B} .

If U is any subset of X we can write U as the union of all elements $x \in U$,

$$U = \bigcup_{x \in U} \{x\}.$$

Since we are given that each $\{x\}$ is in \mathcal{B} by assumption, $U \in \mathcal{C}_{\mathcal{B}}$, and therefore every subset of X is in $\mathcal{C}_{\mathcal{B}}$, so $\mathcal{C}_{\mathcal{B}}$ is the discrete topology.

- (5) Let $(X, \mathcal{C}_X), (Y, \mathcal{C}_Y)$ and (Z, \mathcal{C}_Z) be topological spaces.
 - (a) Define what it means for a function $f: X \to Y$ to be continuous.

 $f: X \to Y$ is continuous iff $f^{-1}(U) \in \mathcal{C}_X$ whenever $U \in \mathcal{C}_Y$. In words, the pre-image of any open set in Y is an open set in X.

(b) What is the product topology on $Y \times Z$?

The product topology is the one generated by the basis consisting of sets $U \times V$ where U is open in Y and V is open in Z.

(c) Suppose $f: X \to Y$ and $g: X \to Z$ are continuous functions. Show that the function $h: X \to Y \times Z$ defined by

$$h(x) = (f(x), g(x))$$

is continuous, if $Y \times Z$ has the product topology. [Hint: determine the set $h^{-1}(U \times V)$ from its definition, and express it in terms of $f^{-1}(U)$ and $f^{-1}(V)$.]

It suffices to show $h^{-1}(U \times V)$ is open in X whenever $U \times V$ is a basis element for the product topology on $Y \times Z$, i.e. U is open in Y and V is open in Z. We have

$$h^{-1}(U \times V) = \{x \in X | h(x) \in U \times V\}$$

= $\{x \in X | (f(x), g(x)) \in U \times V\}$
= $\{x \in X | f(x) \in U\} \cap \{x \in X | g(x) \in V\}$
= $f^{-1}(U) \cap f^{-1}(V),$

which is open in X since $f^{-1}(U)$ and $g^{-1}(V)$ are open in X, since f and g are continuous.