MATH 320, Intro. to Topology, Spring 2024 Exam II by Scott Wilson

Name: \qquad

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using.
(1) Let $X=\{a, b, c\}$ and consider the following three topologies on X,

$$
\begin{aligned}
& \mathcal{C}_{1}=\{\emptyset, X,\{a\},\{b, c\}\} \\
& \mathcal{C}_{2}=\{\emptyset, X,\{a\},\{b\},\{a, b\},\{b, c\}\} \\
& \mathcal{C}_{3}=\{\emptyset, X,\{a, b\},\{c\}\} .
\end{aligned}
$$

(a) Is \mathcal{C}_{1} finer than \mathcal{C}_{2} ?

No, for example $\{b\} \in \mathcal{C}_{2}$, but $\{b\} \notin \mathcal{C}_{1}$, so $\mathcal{C}_{2} \nsubseteq \mathcal{C}_{1}$.
(b) What is $\mathcal{C}_{2} \cap \mathcal{C}_{3}$? Is this a topology on X ?

$$
\mathcal{C}_{2} \cap \mathcal{C}_{3}=\{\emptyset, X,\{a, b\}\}
$$

This is a topology on X since it contains \emptyset and X, and is closed under arbitrary unions and finite intersections.
(c) What is $\mathcal{C}_{1} \cup \mathcal{C}_{3}$? Is this a topology on X ?

$$
\mathcal{C}_{1} \cup \mathcal{C}_{3}=\{\emptyset, X,\{a\},\{b, c\},\{a, b\},\{c\}\}
$$

This is not a topology on X since is not closed under finite intersections (e.g. $\{b, c\} \cap\{a, b\}=\{b\} \notin \mathcal{C}_{1} \cup \mathcal{C}_{3}$), nor is it closed under unions (e.g. $\{a\} \cup\{c\}=$ $\left.\{a, c\} \notin \mathcal{C}_{1} \cup \mathcal{C}_{3}\right)$.
(2) Consider the following subsets of the topological space \mathbb{R} (with its standard topology). For each of the following subsets, determine if it is open, closed, neither, or both, and explain your reasoning. Let \mathbb{Z} denote the integers, and \mathbb{Q} denote the rationals. (a) $[1,5)$

This set is not open or closed. It is not open since no interval containing 1 is contained in the set. Similarly, the complement is not open since no interval containing 5 is contained in the complement.
(b) $\mathbb{R}-\mathbb{Z}$

This set is open since it is the union of all open intervals of the form $(n, n+1)$ for $n \in \mathbb{Z}$. It is not closed since the complement \mathbb{Z} is not open (by the same argument as in the previous part).
(c) \mathbb{Q}

This set is not open by the same argument as the first part. It is also not closed by the same argument applied to the complement $\mathbb{R}-\mathbb{Q}$. (Concisely, every open interval contains both rational and irrational numbers).
(3) Do each part. You must explain your answer for full credit.
(a) What is the closure of \mathbb{Q} in \mathbb{R} ?

The closure of \mathbb{Q} is \mathbb{R}, since any open interval containing a given real number also contains a rational number.
(b) What is the interior of $[-1,0) \cup(0,3)$ in \mathbb{R}.

The interior is $(-1,0) \cup(0,3)$. This is an open set contained in the given set and no open set contained in the given set can contain -1 .
(c) What is the closure of the set $\left\{x \left\lvert\, \frac{1}{x} \in \mathbb{Z}\right.\right\}$ in \mathbb{R} ? What is the interior?

The closure of this set is $\left\{x \left\lvert\, \frac{1}{x} \in \mathbb{Z}\right.\right\} \cup\{0\}$, since 0 is the only limit point of $\left\{x \left\lvert\, \frac{1}{x} \in \mathbb{Z}\right.\right\}$ that is not contained in $\left\{x \left\lvert\, \frac{1}{x} \in \mathbb{Z}\right.\right\}$. The interior is empty.
(4) Let X be a set. Do both parts.
(a) Define what is a basis for a topology on X.

A basis for a topology on X is a collection \mathcal{B} of subsets of X such that
(i) For all $x \in X, x \in B$ for some $B \in \mathcal{B}$.
(ii) If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \cap B_{2}$ then there is some $B_{3} \in \mathcal{B}$ such that $x \in B_{3} \subseteq B_{1} \cap B_{2}$.
(b) Let \mathcal{B} be the collection of all subsets of X which contain exactly one element:

$$
\mathcal{B}=\{B \subseteq X \mid B \text { has one element }\}
$$

Show that the topology generated by \mathcal{B} is the discrete topology, i.e. every subset of X is open in this topology. (You do not have to prove \mathcal{B} is a basis, but you can if you want).

Recall the topology $\mathcal{C}_{\mathcal{B}}$ generated by a basis \mathcal{B} consists of all unions of elements of \mathcal{B}.
If U is any subset of X we can write U as the union of all elements $x \in U$,

$$
U=\bigcup_{x \in U}\{x\}
$$

Since we are given that each $\{x\}$ is in \mathcal{B} by assumption, $U \in \mathcal{C}_{\mathcal{B}}$, and therefore every subset of X is in $\mathcal{C}_{\mathcal{B}}$, so $\mathcal{C}_{\mathcal{B}}$ is the discrete topology.
(5) Let $\left(X, \mathcal{C}_{X}\right),\left(Y, \mathcal{C}_{Y}\right)$ and $\left(Z, \mathcal{C}_{Z}\right)$ be topological spaces.
(a) Define what it means for a function $f: X \rightarrow Y$ to be continuous.
$f: X \rightarrow Y$ is continuous iff $f^{-1}(U) \in \mathcal{C}_{X}$ whenever $U \in \mathcal{C}_{Y}$. In words, the pre-image of any open set in Y is an open set in X.
(b) What is the product topology on $Y \times Z$?

The product topology is the one generated by the basis consisting of sets $U \times V$ where U is open in Y and V is open in Z.
(c) Suppose $f: X \rightarrow Y$ and $g: X \rightarrow Z$ are continuous functions. Show that the function $h: X \rightarrow Y \times Z$ defined by

$$
h(x)=(f(x), g(x))
$$

is continuous, if $Y \times Z$ has the product topology. [Hint: determine the set $h^{-1}(U \times V)$ from its definition, and express it in terms of $f^{-1}(U)$ and $f^{-1}(V)$.]

It suffices to show $h^{-1}(U \times V)$ is open in X whenever $U \times V$ is a basis element for the product topology on $Y \times Z$, i.e. U is open in Y and V is open in Z. We have

$$
\begin{aligned}
h^{-1}(U \times V) & =\{x \in X \mid h(x) \in U \times V\} \\
& =\{x \in X \mid(f(x), g(x)) \in U \times V\} \\
& =\{x \in X \mid f(x) \in U\} \cap\{x \in X \mid g(x) \in V\} \\
& =f^{-1}(U) \cap f^{-1}(V),
\end{aligned}
$$

which is open in X since $f^{-1}(U)$ and $g^{-1}(V)$ are open in X, since f and g are continuous.

