MATH 320/620, Point Set Topology, Spring 2024 Exam I by Scott Wilson

Name: \qquad

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using.
(1) Consider the following sets: $A=\{a, b\}, B=\{b, x, y\}$, and $S=\{a, b, c, x, y, z\}$. Answer the following, using proper set-theoretic notation.
(a) What is $A \cup B$?

$$
A \cup B=\{a, b, x, y\}
$$

(b) What is $A \cap B$?

$$
A \cap B=\{b\}
$$

(c) What is the complement of B in S ?

$$
\{a, c, z\}
$$

(d) How many elements are in the power set of S ?

$$
2^{6}=64
$$

(2) Let I be a set, and let A_{α} be a set for each $\alpha \in I$.
(a) Prove: for each $\beta \in I, A_{\beta} \subset \bigcup_{\alpha \in I} A_{\alpha}$.

If $x \in A_{\beta}$, then $x \in A_{\alpha}$ for some $\alpha \in I$, so $x \in \bigcup_{\alpha \in I} A_{\alpha}$.
(b) Is the following true or false, in general: for each $\beta \in I, A_{\beta} \subset \bigcap_{\alpha \in I} A_{\alpha}$.

False. Even for two sets, i.e. $I=\{1,2\}$, we do not have $A_{1} \subset A_{1} \cap A_{2}$ in general.
(c) Is the following true or false, in general:
for each $\beta \in I, A_{\beta} \cap\left(\bigcup_{\alpha \in I} A_{\alpha}\right)=\bigcup_{\alpha \in I}\left(A_{\beta} \cap A_{\alpha}\right)$.

True, proof: $x \in A_{\beta} \cap\left(\bigcup_{\alpha \in I} A_{\alpha}\right)$, if and only if $x \in A_{\beta}$ and $x \in A_{\alpha}$ for all $\alpha \in I$, if and only if $x \in A_{\beta} \cap A_{\alpha}$ for all $\alpha \in I$.
(d) Consider an example, with $I=(0, \infty)$, and let $X_{\alpha}=(-\alpha, \alpha) \subset \mathbb{R}$, for $\alpha \in I$. Determine the sets

$$
\bigcap_{\alpha \in I} X_{\alpha} \quad \text { and } \quad \bigcup_{\alpha \in I} X_{\alpha}
$$

$$
\bigcap_{\alpha \in \mathbb{R}} X_{\alpha}=\{0\} \quad \text { and } \quad \bigcup_{\alpha \in \mathbb{R}} X_{\alpha}=\mathbb{R}
$$

(3) Let X and Y be sets, and let $f: X \rightarrow Y$ be a function.
(a) Let $A \subset X$. Define the image of A, which we denote by $f(A)$.

$$
f(A)=\{y \in Y \mid y=f(a) \text { for some } a \in A\}
$$

(b) Let $B \subset Y$. Define the pre-image of B, which we denote by $f^{-1}(B)$.

$$
f^{-1}(B)=\{x \in X \mid f(x) \in B\}
$$

(c) Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=x^{2}$. What is $g^{-1}(g([2,3]))$? You might want to graph the function.

$$
g^{-1}(g([2,3]))=g^{-1}([4,9])=[-3,-2] \cup[2,3]
$$

(d) Consider the function $h: \mathbb{R} \rightarrow \mathbb{R}$ given by $h(x)=x^{2}-1$. What is $h\left(h^{-1}([-2,0])\right)$? You might want to graph the function.

First graph the function. Notice that $x^{2}-1 \geq-1$ and the image of h is $[-1, \infty)$. Also $h(1)=h(-1)=0$ and $h(0)=-1$. First, $h^{-1}([-2,0])=h^{-1}([-1,0])=$ $[-1,1]$, so

$$
h\left(h^{-1}([-2,0])\right)=h([-1,1])=[-1,0] .
$$

(4) Do all parts.
(a) Define what is a metric space.

A metric space is a set X with a function $d: X \times X \rightarrow \mathbb{R}$ such that
(i) $d(x, y) \geq 0$ for all $x, y \in X$, with $d(x, y)=0$ if and only if $x=y$.
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.
(b) Consider the set \mathbb{R}^{2} with the metric

$$
d(a, b)=\max \left\{\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right\}
$$

where $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$.
(i) Compute $d(a, b)$ where $a=(2,4)$ and $b=(-1,2)$.

$$
d(a, b)=\max \{|2+1|,|4-2|\}=3 .
$$

(ii) Draw a picture of $B_{d}(c, 1)$, the ball of radius 1 around the point $c=(2,2)$.

This is the region inside the square with vertices at $(1,1),(3,1)(3,3)$, and $(1,3)$.
(5) Do all parts.
(a) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define what it means for a function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ to be continuous at $a \in X$. (Your answer should involve δ and ϵ.)

A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous if, for any $\epsilon>0$ there is a number $\delta>0$ so that if $d_{X}(x, a)<\delta$ then $d_{Y}(f(x), f(a))<\epsilon$.
Equivalently, for any $\epsilon>0$ there is a number $\delta>0$ so that if $x \in B_{d_{X}}(a, \delta)$ then $f(x) \in B_{d_{Y}}(f(a), \epsilon)$.
Equivalently, for any $\epsilon>0$ there is a number $\delta>0$ so that $B_{d_{X}}(a, \delta) \subset$ $f^{-1}\left(B_{d_{Y}}(f(a), \epsilon)\right)$.
(b) Consider \mathbb{R}^{n} with the two metrics

$$
\begin{aligned}
d_{E}(a, b) & =\left(\left(a_{1}-b_{1}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}\right)^{1 / 2} \\
d(a, b) & =\max _{i=1, \ldots, n}\left|a_{i}-b_{i}\right|
\end{aligned}
$$

for $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$.
Show that the identity function $i:\left(\mathbb{R}^{n}, d_{E}\right) \rightarrow\left(\mathbb{R}^{n}, d\right)$ is continuous at every point $a \in \mathbb{R}^{n}$.

Given $\epsilon>0$ let $\delta=\epsilon$. If $d(a, x)<\delta=\epsilon$, then

$$
\left(a_{1}-x_{1}\right)^{2}+\cdots+\left(a_{n}-x_{n}\right)^{2}<\epsilon^{2}
$$

so that $\left(a_{i}-x_{i}\right)^{2}<\epsilon^{2}$ for each $i=1, \ldots, n$, and therefore

$$
d(i(a), i(x))=d(a, x)=\max _{i=1, \ldots, n}\left|a_{i}-x_{i}\right|<\epsilon .
$$

