MATH 320/620, Point Set Topology, Spring 2024 Exam I by Scott Wilson

Name: _____

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using. (1) Consider the following sets: A = {a,b}, B = {b,x,y}, and S = {a,b,c,x,y,z}. Answer the following, using proper set-theoretic notation.
(a) What is A ∪ B?

$$A \cup B = \{a, b, x, y\}$$

(b) What is $A \cap B$?

$$A \cap B = \{b\}$$

(c) What is the complement of B in S?

$$\{a, c, z\}$$

(d) How many elements are in the power set of S?

$$2^6 = 64$$

(2) Let *I* be a set, and let A_{α} be a set for each $\alpha \in I$. (a) Prove: for each $\beta \in I$, $A_{\beta} \subset \bigcup_{\alpha \in I} A_{\alpha}$.

If $x \in A_{\beta}$, then $x \in A_{\alpha}$ for some $\alpha \in I$, so $x \in \bigcup_{\alpha \in I} A_{\alpha}$.

(b) Is the following true or false, in general: for each $\beta \in I$, $A_{\beta} \subset \bigcap_{\alpha \in I} A_{\alpha}$.

False. Even for two sets, i.e. $I = \{1, 2\}$, we do not have $A_1 \subset A_1 \cap A_2$ in general.

(c) Is the following true or false, in general: for each $\beta \in I$, $A_{\beta} \cap \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (A_{\beta} \cap A_{\alpha})$.

True, proof: $x \in A_{\beta} \cap (\bigcup_{\alpha \in I} A_{\alpha})$, if and only if $x \in A_{\beta}$ and $x \in A_{\alpha}$ for all $\alpha \in I$, if and only if $x \in A_{\beta} \cap A_{\alpha}$ for all $\alpha \in I$.

(d) Consider an example, with $I = (0, \infty)$, and let $X_{\alpha} = (-\alpha, \alpha) \subset \mathbb{R}$, for $\alpha \in I$. Determine the sets

$$\bigcap_{\alpha \in I} X_{\alpha} \quad \text{and} \quad \bigcup_{\alpha \in I} X_{\alpha}$$

$$\bigcap_{\alpha \in \mathbb{R}} X_{\alpha} = \{0\} \quad \text{and} \quad \bigcup_{\alpha \in \mathbb{R}} X_{\alpha} = \mathbb{R}$$

(3) Let X and Y be sets, and let f : X → Y be a function.
(a) Let A ⊂ X. Define the image of A, which we denote by f(A).

$$f(A) = \{ y \in Y | y = f(a) \text{ for some } a \in A \}.$$

(b) Let $B \subset Y$. Define the pre-image of B, which we denote by $f^{-1}(B)$.

$$f^{-1}(B) = \{ x \in X | f(x) \in B \}.$$

(c) Consider the function $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^2$. What is $g^{-1}(g([2,3]))$? You might want to graph the function.

$$g^{-1}(g([2,3])) = g^{-1}([4,9]) = [-3,-2] \cup [2,3]$$

(d) Consider the function $h : \mathbb{R} \to \mathbb{R}$ given by $h(x) = x^2 - 1$. What is $h(h^{-1}([-2, 0]))$? You might want to graph the function.

First graph the function. Notice that $x^2 - 1 \ge -1$ and the image of h is $[-1, \infty)$. Also h(1) = h(-1) = 0 and h(0) = -1. First, $h^{-1}([-2, 0]) = h^{-1}([-1, 0]) = [-1, 1]$, so $h(h^{-1}([-2, 0])) = h([-1, 1]) = [-1, 0].$

(4) Do all parts.

(a) Define what is a metric space.

A metric space is a set X with a function $d: X \times X \to \mathbb{R}$ such that

- (i) $d(x,y) \ge 0$ for all $x, y \in X$, with d(x,y) = 0 if and only if x = y.
- (ii) d(x,y) = d(y,x) for all $x, y \in X$.
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

(b) Consider the set \mathbb{R}^2 with the metric

$$d(a,b) = \max\{|a_1 - b_1|, |a_2 - b_2|\},\$$

where $a = (a_1, a_2)$ and $b = (b_1, b_2)$.

(i) Compute d(a, b) where a = (2, 4) and b = (-1, 2).

$$d(a,b) = \max\{|2+1|, |4-2|\} = 3.$$

(ii) Draw a picture of $B_d(c, 1)$, the ball of radius 1 around the point c = (2, 2).

This is the region inside the square with vertices at (1, 1), (3, 1), (3, 3), and (1, 3).

(5) Do all parts.

(a) Let (X, d_X) and (Y, d_Y) be metric spaces. Define what it means for a function $f: (X, d_X) \to (Y, d_Y)$ to be continuous at $a \in X$. (Your answer should involve δ and ϵ .)

A function $f: (X, d_X) \to (Y, d_Y)$ is continuous if, for any $\epsilon > 0$ there is a number $\delta > 0$ so that if $d_X(x, a) < \delta$ then $d_Y(f(x), f(a)) < \epsilon$. Equivalently, for any $\epsilon > 0$ there is a number $\delta > 0$ so that if $x \in B_{d_X}(a, \delta)$ then $f(x) \in B_{d_Y}(f(a), \epsilon)$. Equivalently, for any $\epsilon > 0$ there is a number $\delta > 0$ so that $B_{d_X}(a, \delta) \subset f^{-1}(B_{d_Y}(f(a), \epsilon))$.

(b) Consider \mathbb{R}^n with the two metrics

$$d_E(a,b) = \left((a_1 - b_1)^2 + \dots + (a_n - b_n)^2 \right)^{1/2}$$
$$d(a,b) = \max_{i=1,\dots,n} |a_i - b_i|$$
for $a = (a_1,\dots,a_n)$ and $b = (b_1,\dots,b_n)$.

Show that the identity function $i : (\mathbb{R}^n, d_E) \to (\mathbb{R}^n, d)$ is continuous at every point $a \in \mathbb{R}^n$.

Given $\epsilon > 0$ let $\delta = \epsilon$. If $d(a, x) < \delta = \epsilon$, then $(a_1 - x_1)^2 + \dots + (a_n - x_n)^2 < \epsilon^2$, so that $(a_i - x_i)^2 < \epsilon^2$ for each $i = 1, \dots, n$, and therefore

$$d(i(a), i(x)) = d(a, x) = \max_{i=1,\dots,n} |a_i - x_i| < \epsilon.$$