MATH 620, Intro. to Topology, Spring 2024 Exam II by Scott Wilson

Name:

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using.

(1) Consider the following subsets of the topological space \mathbb{R} (with its standard topology). For each of the following subsets, determine if it is open, closed, neither, or both, and explain your reasoning. Let \mathbb{Z} denote the integers, and \mathbb{Q} denote the rationals. (a) [1,5)

This set is not open or closed. It is not open since no interval containing 1 is contained in the set. Similarly, the complement is not open since no interval containing 5 is contained in the complement.

(b) $\mathbb{R} - \mathbb{Z}$

This set is open since it is the union of all open intervals of the form (n, n + 1) for $n \in \mathbb{Z}$. It is not closed since the complement \mathbb{Z} is not open (by the same argument as in the previous part).

(c) Q

This set is not open by the same argument as the first part. It is also not closed by the same argument applied to the complement $\mathbb{R} - \mathbb{Q}$. (Concisely, every open interval contains both rational and irrational numbers).

- (2) Do each part. You must explain your answer for full credit.
 - (a) What is the closure of \mathbb{Q} in \mathbb{R} ?

The closure of \mathbb{Q} is \mathbb{R} . To see this, $ifx \in \mathbb{R}$ then any open interval containing x contains a rational number, so x is in the closure of \mathbb{Q} .

(b) What is the interior of $[-1,0) \cup (0,3)$ in \mathbb{R} .

The interior is $(-1,0) \cup (0,3)$. This is an open set contained in the given set, containing all points except -1, and no open set contained in the given set can contain -1.

(c) What is the closure of the set $\{x | \frac{1}{x} \in \mathbb{Z}\}$ in \mathbb{R} ? What is the interior?

The closure of this set is $\{x|\frac{1}{x}\in\mathbb{Z}\}\cup\{0\}$, since 0 is the only limit point of $\{x|\frac{1}{x}\in\mathbb{Z}\}$ that is not contained in $\{x|\frac{1}{x}\in\mathbb{Z}\}$. The interior is empty.

- (3) Let X be a set. Do both parts.
 - (a) Define what is a basis for a topology on X.

A basis for a topology on X is a collection \mathcal{B} of subsets of X such that

- (i) For all $x \in X$, $x \in B$ for some $B \in \mathcal{B}$.
- (ii) If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ then there is some $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.
- (b) Using an appropriate basis for each topology, show that the product topology on $\mathbb{R} \times \mathbb{R}$ is the same as the topology on $\mathbb{R} \times \mathbb{R}$ determined by the Euclidean metric. You can use drawings and words to explain your argument (rather than explicit formulas for variables, radii, lengths, widths, etc.)

We first show that any ϵ -ball B is open in the product topology. For any point x in an open ϵ -ball B, we can find an (open) rectangle $I \times J$ with $x \in I \times J \subset B$. Here I and J are open intervals in \mathbb{R} . So, an open ϵ -ball can be written as a union of rectangles, and so an ϵ -ball is open in the product topology. This shows the Euclidean topology is finer than the product topology.

Conversely, given a point x in an open rectangle $I \times J$, we can find an ϵ -ball B with $x \in B \subset I \times J$. So, an open rectangle can be written as a union of ϵ -balls, and thus is open in the Euclidean topology. This shows the product topology is finer than the Euclidean topology.

So, the two topologies are equal.

- (4) Let (X, \mathcal{C}) be a topological space and let Y be a subset of X.
 - (a) What are the open sets in the subspace topology on Y? In other words, define the subspace topology. (You do not have to show that it is a topology).

A subset V of Y is open in Y if and only if $V = Y \cap U$ for some open subset U of X.

(b) Show that if X is Hausdorff then Y (with the subspace topology) is also Hausdorff.

Let $a, b \in Y \subset X$. Since X is Hausdorff, there are open sets U_a and U_b of X such that $a \in U_a$ and $b \in U_b$, and $U_a \cap U_b = \emptyset$. Then the sets $V_a = Y \cap U_a$ and $V_b = Y \cap U_b$ are open subsets of Y, with $a \in V_a$ and $b \in V_b$ and $V_a \cap V_b = \emptyset$. This shows Y is Hausdorff.

- (5) Let (X, \mathcal{C}_X) , (Y, \mathcal{C}_Y) and (Z, \mathcal{C}_Z) be topological spaces.
 - (a) Define what it means for a function $f: X \to Y$ to be continuous.

 $f: X \to Y$ is continuous iff $f^{-1}(U) \in \mathcal{C}_X$ whenever $U \in \mathcal{C}_Y$. In words, the pre-image of any open set in Y is an open set in X.

(b) Suppose $f: X \to Y$ and $g: X \to Z$ are continuous functions. Show that the function $h: X \to Y \times Z$ defined by

$$h(x) = (f(x), g(x))$$

is continuous, if $Y \times Z$ has the product topology.

It suffices to show $h^{-1}(U \times V)$ is open in X whenever $U \times V$ is a basis element for the product topology on $Y \times Z$, i.e. U is open in Y and V is open in Z. We have

$$\begin{split} h^{-1}(U \times V) &= \{ x \in X | \, h(x) \in U \times V \} \\ &= \{ x \in X | \, (f(x), g(x)) \in U \times V \} \\ &= \{ x \in X | \, f(x) \in U \} \cap \{ x \in X | \, g(x) \in V \} \\ &= f^{-1}(U) \cap f^{-1}(V), \end{split}$$

which is open in X since $f^{-1}(U)$ and $g^{-1}(V)$ are open in X, since f and g are continuous.