MATH 320/620 Point-Set Topology by Scott Wilson

Here are solutions to Exercises 1, 2, 3, 4 in Chapter 1.6 of Mendelson's book. The solutions assume that the reader is familiar with all relevant definitions.
(1) Let $f: A \rightarrow B$ be given.
(a) If $x \in X$ then $f(x) \in f(X)$, so $x \in f^{-1}(f(X))$.
(b) If $Y \subset B$, and $y \in f\left(f^{-1}(Y)\right)$, then $y=f(x)$ for $x \in f^{-1}(Y)$, so $y=f(x) \in Y$.
(c) If $f: A \rightarrow B$ is one-to-one, then for each $X \subset A$, we show $f^{-1}(f(X)) \subset$ X. (The other containment always holds, by the first part.) Let $z \in f^{-1}(f(X))$, so that $f(z) \in f(X)$, i.e. $f(z)=f(x)$ for some $x \in X$. Since f is one-to-one, $z=x$, so $z \in X$.
(d) If $f: A \rightarrow B$ is onto, then for each $Y \subset B$, we show $Y \subset f\left(f^{-1}(Y)\right)$. (The other containment always holds, by the second part.) Let $y \in Y$. Since f is onto, $y=f(x)$ for some $x \in f^{-1}(Y) \subset A$. Then $y \in$ $f\left(f^{-1}(Y)\right)$.
(2) Let $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$, each with two distinct elements. Let $f: A \rightarrow B$ be such that $f(x)=b_{1}$ for $x=a_{1}, a_{2}$.
(a) $f^{-1}\left(f\left(\left\{a_{1}\right\}\right)\right)=f^{-1}\left(\left\{b_{1}\right\}\right)=\left\{a_{1}, a_{2}\right\} \neq\left\{a_{1}\right\}$.
(b) $f\left(f^{-1}(B)\right)=f(A)=\left\{b_{1}\right\} \neq B$.
(c) $\emptyset=f(\emptyset)=f\left(\left\{a_{1}\right\} \cap\left\{a_{2}\right\}\right) \neq f\left(\left\{a_{1}\right\}\right) \cap f\left(\left\{a_{2}\right\}\right)=\left\{b_{1}\right\} \cap\left\{b_{1}\right\}=\left\{b_{1}\right\}$.
(3) Let $f: A \rightarrow B$ be given and let $\left\{X_{\alpha}\right\}_{\alpha \in I}$ be an indexed family of subsets of A.
(a) We show $f\left(\bigcup_{\alpha \in I} X_{\alpha}\right)=\bigcup_{\alpha \in I} f\left(X_{\alpha}\right)$. We have: $y \in f\left(\bigcup_{\alpha \in I} X_{\alpha}\right)$ iff 1 $y=f(x)$ for some $x \in \bigcup_{\alpha \in I} X_{\alpha}$, iff $y=f(x)$ for some $x \in X_{\alpha}$ for some $\alpha \in I$, iff $y \in f\left(X_{\alpha}\right)$ for some $\alpha \in I$, iff $y \in \bigcup_{\alpha \in I} f\left(X_{\alpha}\right)$.
(b) We show $f\left(\bigcap_{\alpha \in I} X_{\alpha}\right) \subset \bigcap_{\alpha \in I} f\left(X_{\alpha}\right)$. We have: $y \in f\left(\bigcap_{\alpha \in I} X_{\alpha}\right)$ implies $y=f(x)$ for some $x \in \bigcap_{\alpha \in I} X_{\alpha}$, which implies $y=f(x)$ for some x satisfying $x \in X_{\alpha}$ for all $\alpha \in I$. This implies $y \in f\left(X_{\alpha}\right)$ for all $\alpha \in I$, and so $y \in \bigcap_{\alpha \in I} f\left(X_{\alpha}\right)$.
(c) Suppose $f: A \rightarrow B$ is one-to-one. We show $\bigcap_{\alpha \in I} f\left(X_{\alpha}\right) \subset f\left(\bigcap_{\alpha \in I} X_{\alpha}\right)$. If $y \in \bigcap_{\alpha \in I} f\left(X_{\alpha}\right)$ then for each $\alpha \in I, y=f\left(x_{\alpha}\right)$ for some $x_{\alpha} \in X_{\alpha}$. Since f is one-to-one, we must have $x_{\alpha}=x_{\beta}$ for any $\alpha, \beta \in I$, so there is a unique $x \in \bigcap_{\alpha \in I} X_{\alpha}$ such that $f(x)=y$. Then $y \in f\left(\bigcap_{\alpha \in I} X_{\alpha}\right)$.
(4) Let $f: A \rightarrow B$ be given and let $\left\{Y_{\alpha}\right\}_{\alpha \in I}$ be an indexed family of subsets of B.
(a) We show $f^{-1}\left(\bigcup_{\alpha \in I} Y_{\alpha}\right)=\bigcup_{\alpha \in I} f^{-1}\left(Y_{\alpha}\right)$. We have: $x \in f^{-1}\left(\bigcup_{\alpha \in I} Y_{\alpha}\right)$ iff $f(x) \in \bigcup_{\alpha \in I} Y_{\alpha}$, iff $f(x) \in Y_{\alpha}$ for some $\alpha \in I$, iff $x \in f^{-1}\left(Y_{\alpha}\right)$ for some $\alpha \in I$, iff $x \in \bigcup_{\alpha \in I} f^{-1}\left(Y_{\alpha}\right)$.
(b) We show $f^{-1}\left(\bigcap_{\alpha \in I} Y_{\alpha}\right)=\bigcap_{\alpha \in I} f^{-1}\left(Y_{\alpha}\right)$. We have: $x \in f^{-1}\left(\bigcap_{\alpha \in I} Y_{\alpha}\right)$ iff $f(x) \in \bigcap_{\alpha \in I} Y_{\alpha}$, iff $f(x) \in Y_{\alpha}$ for all $\alpha \in I$, iff $x \in f^{-1}\left(Y_{\alpha}\right)$ for all $\alpha \in I$, iff $x \in \bigcap_{\alpha \in I} f^{-1}\left(Y_{\alpha}\right)$.
(c) The exercise ${ }^{2}$ assumes $X \subset B$, but I will take $Y \subset B$, and show $f^{-1}(B-Y)=A-f^{-1}(Y)$. We have $a \in f^{-1}(B-Y) \subset A$ iff $f(a) \in$ $B-Y$, iff $f(a) \in B$ and $f(a) \notin Y$, iff $a \in A$ and $a \notin f^{-1}(Y)$, or equivalently, $a \in A-f^{-1}(Y)$.
(d) If $X \subset A$ and $Y \subset B$, we show $f\left(X \cap f^{-1}(Y)\right)=f(X) \cap Y$. By problem $3 b$ and $1 b$ we have $f\left(X \cap f^{-1}(Y)\right) \subset f(X) \cap f\left(f^{-1}(Y)\right) \subset f(X) \cap Y$. To prove the reverse containment, if $y \in f(X) \cap Y$ then $y=f(x)$ for some $x \in X \cap f^{-1}(Y)$, so that $y=f(x) \in f\left(X \cap f^{-1}(Y)\right)$.

[^0]
[^0]: 1 "iff" means "if and only if"
 ${ }^{2}$ The author writes $C(Z)$ for the complement of Z in B. I prefer the notation $B-Z$.

