MATH 320/620, Intro. to Topology, Spring 2024 Final Exam by Scott Wilson

Name:

Problem	Max points	Grade
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
Total	100 or 120	

Instructions: Read each problem carefully. If you need more space, you can use the back of the pages. In this case, make a clear reference to the continuation of your work. Give clear and thorough explanations for your solutions. You may use results from class or the textbook but make a clear reference to what you are using.
\star Students in 620 must do all problems.

Ł Students in 320 may choose to omit exactly one problem, by X-ing it out, or may choose do to all problems. In either case, the test will be converted to a score out of 100. (If in doubt, leave one out!)
(1) Do all parts.
(a) Define what is a topology \mathcal{T} on a set X.

A topology for X is a collection of subsets of X, including \emptyset and X, that is closed under arbitrary unions and finite intersections.
(b) If X and Y are sets, and $f: X \rightarrow Y$ is a function, with $U \subset Y$, write down the defintion of $f^{-1}(U)$, i.e. the pre-image of U under f.

$$
f^{-1}(U)=\{x \in X \mid f(x) \in U\}
$$

(c) Let \mathcal{T}_{X} be a topology on a set X, and \mathcal{T}_{Y} be a topology on a set Y. Define what is a continuous function from the space $\left(X, \mathcal{T}_{X}\right)$ to the space $\left(Y, \mathcal{T}_{Y}\right)$.

A function $f: X \rightarrow Y$ is continuous if for each open set U in $Y, f^{-1}(U)$ is open in X.
(2) Consider the real numbers \mathbb{R} with the standard topology.
(a) Write down a basis for this topology, and explain in terms of this basis which subsets of \mathbb{R} are open. (Your answer might start as "A subset of \mathbb{R} is open if...")

A basis is given by all open intervals (a, b). A subset U of \mathbb{R} is open if for each $x \in U$ there is an open interval (a, b) with $x \in(a, b) \subset U$. Alternatively, a set is open if and only if it is a union of open intervals.
(b) Is the set $(-\infty, 0)$ open in \mathbb{R}, closed in \mathbb{R}, both, or neither? Explain.

Open, not closed.
(c) Let \mathbb{Z}^{+}denote the set positive integers. Is \mathbb{Z}^{+}open in \mathbb{R}, closed in \mathbb{R}, both, or neither? Explain.

Closed, not open.
(d) Is the set $(-1,4]$ open, closed, both, or neither? Explain.

Neither.
(3) For each part, give an example of a subset of \mathbb{R} that has all of the properties listed, or explain why no such example exists.
(a) An infinite subset A of \mathbb{R} whose closure is finite.
none exists, since $A \subset \bar{A}$.
(b) A subset A of \mathbb{R} whose interior is empty, but closure is \mathbb{R}.

For example, $A=\mathbb{Q}$.
(c) A finite subset whose interior is non-empty.

None exists: any point has empty interior since it cannot contain a basis element (and so cannot contain an open set). Similarly, we can see that any finite set has empty interior.
(d) An open subset whose complement is connected.

For example $(-\infty, 0) \cup(1, \infty)$, whose complement is the interval $[0,1]$, which is connected.
(e) A countably infinite subset whose closure is compact.

For example, $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$, whose closure is $A \cup\{0\}$, which is compact.
(4) Consider \mathbb{R} with its standard topology. Do all parts and explain your answers.
(a) Let \mathbb{Z} be the integers, so $\mathbb{Z} \subset \mathbb{R}$. Show that the subspace topology on \mathbb{Z} is the same as the discrete topology on \mathbb{Z}.

It suffices to show every point in \mathbb{Z} is open in the subspace topology, but this is true since $\{k\}=(k-1, k+1) \cap \mathbb{Z}$.
(b) What are the connected subsets of \mathbb{Z} ?

Single point subsets (along with the empty set) are the only connected subsets. If a subset has more than one point has a separation (since every subset of \mathbb{Z} is open).
(c) Show any continuous function $f: \mathbb{R} \rightarrow \mathbb{Z}$ must be constant.
\mathbb{R} is connected, and the continuous image of a connected space is connected, so the image must be a single point.
(d) By the previous part, we can conclude the function $f: \mathbb{R} \rightarrow \mathbb{Z}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

is not continuous. Give an open subset of \mathbb{Z} whose pre-image in \mathbb{R} is not open.

For example $f^{-1}(\{1\})=[0, \infty)$ which is not open in \mathbb{R}.
(5) Consider \mathbb{R}^{n} with the metric topology determined by the standard Euclidean metric, denoted by d.
(a) Let

$$
S^{1}=\left\{x \in \mathbb{R}^{2} \mid d(x, 0)=1\right\}
$$

be the unit circle. Is S^{1} compact? Prove or disprove.
S^{1} is compact since it a closed and bounded subset of \mathbb{R}^{2}.
(b) Is \mathbb{R}^{3} Hausdorff? Explain.

Yes, every metric space is Hausdorff.
(c) Using the previous parts, where applicable, show if $f: S^{1} \rightarrow \mathbb{R}^{3}$ is continuous, and C is closed in S^{1}, then $f(C)$ is closed in \mathbb{R}^{3}. [This shows, in particular, that the continuous image of circle in \mathbb{R}^{3}, a so-called "loop", is a closed subset of \mathbb{R}^{3}.]

The continuous image of a compact space is compact, so $f\left(S^{1}\right)$ is a compact subset of the Hausdorff space \mathbb{R}^{3}. A compact subset of a Hausdorff space is closed, so $\operatorname{Im}(f)=f\left(S^{1}\right)$ is closed in \mathbb{R}^{3}.
(6) Do all parts, and explain your answers.
(a) Define what it means for a topological space X to be homeomorphic to another topological space Y.

We say X is homemorphic to Y is there is a homeomorphism from X to Y, i.e. a bijective function $f: X \rightarrow Y$ such that f and $f^{-1}: Y \rightarrow X$ are continuous.
(b) Are the spaces \mathbb{R} and $(-3,7)$ homeomorphic?

Yes, \mathbb{R} is homeomorphic to any open interval (a, b), as shown in class. For example, $\tan :(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}$ is a homeomorphism, and an appropriate linear function shows that any two open intervals are homeomorphic.
(c) Consider the unit circle S^{1} as a subset of \mathbb{R}^{2}, where \mathbb{R}^{2} has its standard topology, and S^{1} is given the subspace topology. Draw a picture of S^{1}, and draw on it any non-empty subset of S^{1} that is open in the subspace topology (other than S^{1} itself).

For example, a little open arc on the circle.
(d) Consider the open unit ball at the origin of \mathbb{R}^{2}, defined by

$$
B=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}
$$

and let $D=\bar{B}$ be the closure, i.e. the closed unit disk.
Exactly two of the spaces B, D and \mathbb{R}^{2} (with the product topology) are homeomorphic. Explain which pair it is that are homeomorphic, and how you know that no others are homeomorphic.
D is compact (since it is closed and bounded), but B and \mathbb{R}^{2} are not compact, so D is not homeomorphic to either of these.
B and \mathbb{R}^{2} are homeomorphic, we described a homeomorphism in class. (If you like polar coordinates, take the function $f: \mathbb{R}^{2} \rightarrow B$ given by $f(r, \theta)=(g(r), \theta)$ where $g: \mathbb{R} \rightarrow(0, \infty)$ is any homeomorphism.)

