DENSITY OF NONCONTINUITY POINTS
WITH INFINITE ENTROPY

JIANG YUNPING (蒋云平) AND XU LIANCHAO (许连超)
(Department of Mathematics, Fohsing University)

Received June 16, 1984.

ABSTRACT

Let \(M \) be a compact Riemannian manifold with \(\dim M \geq 2 \). Denote by \(h \) the topological entropy function and let \(U_\alpha(M) = \{ f \in C^0(M, M) | h(f) = +\infty \text{ and } h \text{ is not continuous at } f \} \). In this paper, we prove that \(U_\alpha(M) \) is a dense subset of \(C^0(M, M) \).

I. INTRODUCTION

Let \(X \) be a compact metric space. Denote by \(C^0(X, X) \) the space of all continuous mappings of \(X \) into itself with the topology of uniform convergence. Suppose \(f \in C^0(X, X) \). Denote respectively by \(P(f) \), \(Q(f) \) and \(h(f) \) the set of all periodic points, the non-wandering set and the topological entropy of \(f \) (for definition of topological entropy, see [1]). \(h(f) \) is a nonnegative real number or \(+\infty \). Thus, we may consider the following function:

\[
h : C^0(X, X) \rightarrow \mathbb{R}^+ \cup \{ +\infty \},
\]

where \(\mathbb{R}^+ \) denotes the set of all nonnegative real numbers.

For the case of \(X = I = [0, 1] \), L. Block has proved the following

Theorem A. Let \(f \in C^0(I, I) \). If \(h(f) < +\infty \), then \(h \) is not continuous at \(f \).

In [3], Zhou Zou-Ling has generalized the above Theorem A to the case when \(X = |M| \) is a polyhedron. Recently in [4], Zhang Zhusheng generalized again the above Theorem A to a case when \(X \) is a compact topological manifold.

In this paper, let \(M \) be a compact Riemannian manifold, \(\langle \cdot, \cdot \rangle \) be a Riemannian structure on \(M \) and \(d \) be the induced topological metric of \(M \) by \(\langle \cdot, \cdot \rangle \).

References [2], [3], [4] have dealt with the noncontinuity problem of \(h \) at \(f \) when \(h(f) < +\infty \). In [5], Koichi Yano has studied the continuity of \(h \) at \(f \) with \(h(f) = +\infty \) and proved the following

Theorem B. Let \(C_\omega(M) = \{ f \in C^0(M, M) | h(f) = +\infty \text{ and } h \text{ is continuous at } f \} \). Then \(C_\omega(M) \) is a generic subset in \(C^0(M, M) \).

The aim of this paper is to study the noncontinuity problem of \(h \) at \(f \) with \(h(f) = +\infty \). In fact, we shall prove

Theorem 1. Let \(M \) be a compact Riemannian manifold with \(\dim M \geq 2 \) and let
II. LEMMAS

In case when M is a connected finite polyhedron, Zhou Zuo-Ling has proved the following assertion in [3], i.e.

$$h: C^0(M, M) \rightarrow \mathbb{R}^+ \cup \{+\infty\}$$

is surjective.

We prove here a similar result for the case when M is a compact topological manifold as a lemma.

Lemma 1. Suppose M is a compact topological manifold with $\dim M \geq 1$. Then the function

$$h: C^0(M, M) \rightarrow \mathbb{R}^+ \cup \{+\infty\}$$

is surjective, i.e.

$$h(C^0(M, M)) = \mathbb{R}^+ \cup \{+\infty\}.$$

Proof. Take a local coordinate system (U, φ) of M, where φ maps U homeomorphically onto \mathbb{R}^n, $n = \dim M$. Let $[a, b]$ be an interval in \mathbb{R}. For any $T \in \mathbb{R}^+ \cup \{+\infty\}$ we have a surjective continuous self-mapping \tilde{f}_0 of $[a, b]$ with $h(\tilde{f}_0) = T$ (a construction of such an \tilde{f}_0 was given in [3, proposition 1]).

Let $f_0 = \varphi^{-1} \circ \tilde{f}_0 \circ (\varphi^{-1} | [a, b])$. Then f_0 is a surjective continuous self-mapping of $\varphi^{-1} | [a, b]$ with $h(f_0) = h(\tilde{f}_0) = T$ (for h is an invariant under topological conjugacy).

Since a compactly T_3 topological space is normal, by the Tietze extension theorem, there exists a continuous extension $f: M \rightarrow \varphi^{-1} | [a, b]$ of f_0 over M. Since $f(M) \subseteq M$, we find $f(f(M)) \subseteq f(M)$, i.e. $f(M)$ is an invariant set of f. In the same way as in the proof of propositions of [3], we see

$$h(f) = h(f|f(M)).$$

But

$$f(M) = \varphi^{-1} | [a, b].$$

We have

$$h(f|f(M)) = h(f_0).$$

Hence

$$h(f) = T.$$ Q.E.D.

In the following, we denote by $C^1(M, M)$ the space of all C^1 self-mapping of M.

Lemma 2. Let $n = \dim M$. If $f \in C^1(M, M)$, then

$$h(f) \leq \max\{0, n \log a\},$$
where \(a = \sup_{x \in \mathcal{M}} \|Df(x)\| \).

For a proof, see [1, p. 181, Theorem 7.15].

Lemma 3. \(C^r(\mathcal{M}, \mathcal{M}) \) is a dense subset of \(C^r(\mathcal{M}, \mathcal{M}) \).

For a proof, see [6, p. 49, Theorem 2.6].

Lemma 4. Let \(n = \dim \mathcal{M} \geq 1 \) and \(f \in C^r(\mathcal{M}, \mathcal{M}) \). Again let \(\varepsilon > 0 \). There exists \(p \in \mathcal{M} \) and a positive integer \(m \geq 1 \) such that if \(p_i = f^i(p) \), \(i = 0, 1, \ldots, m \) then \(p_i \neq p_j \), \(i, j = 0, 1, \ldots, m-1 \) and there exists \(g \in C^r(\mathcal{M}, \mathcal{M}) \cap B_\varepsilon(f) \) where \(B_\varepsilon(f) = \{ x \in C^r(\mathcal{M}, \mathcal{M}) \mid \rho(f, x) < \varepsilon \} \) and there exist local coordinate systems \(U_i, u_i \) near \(p_i \), \(i = 0, 1, \ldots, m-1 \), satisfying

(i) \(U_i \cap U_j = \emptyset \), \(i \neq j \), \(i, j = 0, 1, \ldots, m-1 \).

(ii) \(u_i(U_i) = E^*_\mathcal{M} \), where \(E^*_\mathcal{M} = \{ x \neq (x^1, \ldots, x^n) \in \mathbb{R}^n \mid \| x \| < \frac{1}{4} \} \), \(i = 0, 1, \ldots, m-1 \).

(iii) \(g_i(U_i) = U_{i+1} \mod m \).

(iv) The local representation \(g_i = u_{i+1} \circ g \circ u_i \) of \(g \) is the identity self-mapping of \(E^*_\mathcal{M} \), \(i = 0, 1, \ldots, m-1 \).

Proof. Since \(\mathcal{M} \) is a compact Riemannian manifold, \(\mathcal{O}(f) \neq \emptyset \). Fix \(g \in \mathcal{O}(f) \).

For \(\varepsilon > 0 \), take \(0 < \varepsilon < \varepsilon/2 \) such that \(D_\varepsilon(g) = \{ p \in \mathcal{M} \mid d(p, g) < \varepsilon \} \) is contained in a local coordinate neighborhood around \(g \). Since \(g \in \mathcal{O}(f) \), there is a \(P \in D_\varepsilon(g) \) such that \(A = \{ k \in N \mid f^k(p) \in D_\varepsilon(g) \} \neq \emptyset \), where \(N \) denotes the set of all natural numbers. Denote \(m = \min(A) \). Then \(m \geq 1 \).

For \(i = 0, 1, \ldots, m-1 \), denote \(p_i = f^i(p) \). It is easy to verify \(p_i \neq p_j \) when \(i \neq j \), \(i, j = 0, 1, \ldots, m-1 \), for otherwise there would exist \(m-1 \geq i > j \geq 0 \) such that \(f^i(p) = f^j(p) \). Thus we have \(f^{-i+j}(p) = f^m(p_i) \in D_\varepsilon(g) \). This contradicts \(m = \min(A) \).

For \(i = 0, 1, \ldots, m-1 \), take \(D_{\varepsilon_i}(p_i) = \{ p \in \mathcal{M} \mid d(p, p_i) < \varepsilon_i \} \) to be such that \(0 < \varepsilon_i < \varepsilon \) and

(i) \(D_{\varepsilon_i}(p_i) \) is contained in a local coordinate neighborhood around \(p_i \), \(i = 0, 1, \ldots, m-1 \), and \(D_{\varepsilon_i}(p_i) \subset D_\varepsilon(g) \);

(ii) \(D_{\varepsilon_i}(p_i) \cap D_{\varepsilon_j}(p_j) = \emptyset \) for \(i \neq j \), \(i, j = 0, 1, \ldots, m-1 \), and \(D_{\varepsilon_i}(p_i) \cap D_{\varepsilon_j}(p_j) = \emptyset \);

(iii) \(f(D_{\varepsilon_i}(p_i)) \subset D_{\varepsilon_{i+1}}(p_{i+1}) \), \(i = 0, 1, \ldots, m-2 \) and \(f(D_{\varepsilon_{m-1}}(p_{m-1})) \subset D_\varepsilon(g) \), where \(D_{\varepsilon_i}(p_i) \) is the closure of \(D_{\varepsilon_i}(p_i) \) in \(\mathcal{M} \).

Denote \(E^*_r = \{ x = (x^1, \ldots, x^n) \in \mathbb{R}^n \mid \| x \| < r \} \), \(0 < r \leq 1 \).

We may take a coordinate function \(u_0 \) around \(g \), and coordinate functions \(u_i \) around \(p_i \), \(i = 1, \ldots, m-1 \), satisfying

(i) \(u_0(p_0) = 0 \), \(u_0(D_\varepsilon(g)) = E^*_\varepsilon \) and \(u_0(D_{\varepsilon_i}(p_i)) = E^*_\varepsilon \);

(ii) \(u_i(p_i) = 0 \), \(u_i(D_{\varepsilon_i}(p_i)) = E^*_\varepsilon \), \(i = 1, 2, \ldots, m-1 \).
\[f_i = u_{i+1} \circ f \circ u_{i-1}^{-1} | E_i^1: E_i^* \rightarrow E_i^*, \quad i = 1, \cdots, m - 2, \]
\[f_{m-1} = u_0 \circ f \circ u_{m-1}^{-1} | E_1^1: E_1^* \rightarrow E_1^*, \]
\[f_0 = u_0 \circ f \circ u_0^{-1} | E_{12}^1: E_{12}^* \rightarrow E_1^*. \]

Take \(\lambda_i \in C^1([0, 1], [0, 1]) \) which satisfies
\begin{enumerate}
 \item \(\lambda_i(t) = 1 \) for \(0 \leq t \leq 1/2, \)
 \item \(\lambda_i(t) = 0 \) for \(2/3 \leq t \leq 1, \)
 \item \(0 \leq \lambda_i(t) \leq 1 \) for \(t \in [0, 1]. \)
\end{enumerate}

Let
\[\lambda_i(t) = 1 - \lambda_i(\hat{t}), \quad \hat{t} \in [0, 1]. \]

We define \(\hat{g}_i(x) = \lambda_i(\|x\|)x + \lambda_i(\|x\|)f_i(x), \quad x \in E_i^*, \quad i = 1, \cdots, m - 1, \)
\[\hat{g}_0(x) = \lambda_i(\|x\|)x + \lambda_i(\|x\|)f_0(x), \quad x \in E_{12}^*. \]

Then \(\hat{g}_i \in C^1(E_i^*, E_i^*), \quad i = 1, \cdots, m - 1 \) and \(\hat{g}_0 \in C^1(E_{12}^*, E_{12}^*). \)

Let
\[g_\varepsilon(\hat{q}) = \begin{cases} u_{i+1} \circ \hat{g}_i \circ u_i^{-1}(\hat{q}), & \hat{q} \in D_i(p_i), \quad i = 0, 1, \cdots (\text{mod} m), \\ f(\hat{q}), & \hat{q} \in M \setminus \bigcup_{i=0}^{m-1} D_i(p_i). \end{cases} \]

It is easy to verify that \(g_\varepsilon \) is well defined.

Denote
\[L = M \setminus \left(\bigcup_{i=0}^{m-1} u_i^{-1}(E_{i+1}^*) \cup u_0^{-1}(E_{12}^*) \right), \]
\[N = \bigcup_{i=0}^{m-1} D_i(p_i). \]

Then \(L \) and \(N \) are all open subset of \(M \) and \(M = \mathbb{R} \cup N. \) Since \(g_\varepsilon | L \) and \(g_\varepsilon | N \)
are all \(C^1 \) mappings, we have
\[g_\varepsilon \in C^1(M, M). \]

Since \(0 < \varepsilon_i < \varepsilon < \varepsilon/2, \quad i = 0, 1, \cdots, m - 1, \) we have \(g_\varepsilon \in B_\varepsilon(f) \). Thus \(g_\varepsilon \in C^1(M, M) \cap B_\varepsilon(f). \)

By the representation of \(g_\varepsilon, \) we observe that \(g_\varepsilon \) satisfies
\[g_\varepsilon(u_i^{-1}(E_{i+1}^*)) = u_{i+1}^{-1}(E_{i+1}^*), \quad i = 0, 1, \cdots (\text{mod} m) \]
and
\[u_{i+1} \circ g_\varepsilon \circ u_i^{-1} | E_i = id E_{i+1}^*. \]

Let \(U_i = u_i^{-1}(E_{i+1}^*), \quad i = 0, 1, \cdots, m - 1. \) We still denote \(u_i \) for \(u_i | U_i. \) Then \((U_i, u_i) \) is a local coordinate system around \(p_i, \quad i = 0, 1, \cdots, m - 1. \)

Now the above \(g_\varepsilon \) and \((U_i, u_i), \quad i = 0, 1, \cdots, m - 1, \) satisfy the requirement
of Lemma 4.

According to Lemma 2, we see further that \(h(\varphi_\ast) < +\infty \).

III. EXAMPLE

Let \(I = [-1, 1], I^n = I^{n-1} \times I, n \geq 2. \)

Let \(\varphi \in C^0(I^{n-1}, I^{n-1}) \) be such that \(h(\varphi) = +\infty \) and \(\varphi|_{\partial I^{n-1}} = \text{id}_{\partial I^{n-1}} \) (for a concrete construction of \(\varphi \) we refer the reader to Lemma 1.)

Let

\[
\varphi(x, t) = (1-t)\varphi(x) + tx, \quad \forall (x, t) \in I^{n-1} \times [0, 1].
\]

Then \(\varphi \) is a continuous mapping of \(I^{n-1} \times [0, 1] \) to \(I^{n-1} \) satisfying

(a) \(\varphi(x, 0) = \varphi(x), \varphi(x, 1) = x, \forall x \in I^{n-1}, \)

(b) \(\varphi(\cdot, t)|_{\partial I^{n-1}} = \text{id}_{\partial I^{n-1}}, \forall t \in [0, 1]. \)

Define a mapping

\[
\alpha(x, s) = \begin{cases}
(\varphi(x, s), s), & 0 \leq s \leq 1, x \in I^{n-1}, \\
(\varphi(x, -s), s), & -1 \leq s \leq 0, x \in I^{n-1}.
\end{cases}
\]

It is easy to verify \(\alpha \in C^0(I^n, I^n) \) and \(\alpha|_{\partial I^n} = \text{id}_{\partial I^n} \). Since \(\alpha(x, 0) = (\varphi(x), 0) \) and \(I^{n-1} \times \{0\} \) is an invariant set of \(\alpha \), we have

\[
h(\alpha) \geq h(\alpha|_{I^{n-1}} \times \{0\}) = h(\varphi).
\]

Hence

\[
h(\alpha) = +\infty.
\]

Let \(\beta(t) \) be a continuous real-value function defined on \([0, 1]\) satisfying

(i) \(\beta(t) > 0 \) for \(t \in (-1, 1) \) and \(\beta(\pm 1) = 0, \)

(ii) \(\beta(-t) = \beta(t) \) for \(t \in [0, 1], \)

(iii) \(\beta(t) \leq 1 - t \) for \(t \in [0, 1]. \)

(See Fig. 1)

(Fig. 1)
For any \(s, 0 < s < 1 \), suppose
\[
\alpha_s(s) = s + \varepsilon \beta(s), \quad \forall \varepsilon \in I.
\]

Then \(\alpha_s(s) \) is a continuous mapping of \(I \) to \(I \).

Let
\[
\alpha_s(x, s) = \begin{cases}
\phi(x, s), & 0 < s < 1, x \in I^{-1}, \\
\phi(x, -s), & -1 < s < 0, x \in I^{-1}.
\end{cases}
\]

Then \(\alpha_s \in C^o(I^+, I^+) \), \(\alpha_s | I^{-1} \times \{-1, 1\} = \text{id}_{I^{-1} \times \{-1, 1\}} \) and
\[
\rho(a, \alpha_s) = \sup_{(x, s) \in I^+} \|a(x, s) - \alpha_s(x, s)\| < s.
\]

Let \(s \in I \) with \(s \neq \pm 1 \). Since \(0 < \beta(s) \leq 1 \), there holds \(r_s(s) > s \). Let \(V \) be a connected open neighborhood of \(r_s(s) \) in \(I \) such that \(s \in V \) (the closure of \(V \) in \(I \)) and let \(U \) be a connected open neighborhood of \(s \) in \(I \) such that \(r_s(U) \subseteq V \) and \(U \cap V = \emptyset \). Let also \(t_0 \in I \) be such that \(U \subseteq [-1, t_0] \) and \(V \subseteq [t_0, 1] \). Since
\[
r_s^m(V) \subseteq [t_m, 1] \text{ for } m = 0, 1, \ldots,
\]
we have
\[
\alpha_s^m(I^{-1} \times U) \subseteq I^{-1} \times V \subseteq I^{-1} \times [t_m, 1] \text{ for } m = 1, 2, \ldots.
\]

Thus
\[
\alpha_s^m(I^{-1} \times U) \cap I^{-1} \times U = \emptyset, \text{ for } m = 1, 2, \ldots.
\]

This means that if \(s \in I \), \(s \neq \pm 1 \) and \(x \in I^{-1} \), then \((x, s) \) is a wandering point of \(a \). Hence \(\mathcal{Q}(a_s) \subseteq I^{-1} \times \{-1, 1\} \).

By
\[
\alpha_s | I^{-1} \times \{-1, 1\} = \text{id}_{I^{-1} \times \{-1, 1\}},
\]
we have
\[
\mathcal{Q}(a_s) = I^{-1} \times \{-1, 1\}.
\]

By
\[
k(a_s) = k(a_s | \mathcal{Q}(a_s))
\]
and
\[
k(\text{id}_{I^{-1} \times \{-1, 1\}}) = 0,
\]
we have
\[
k(a_s) = 0.
\]

Since \(\rho(a_s, a) \to 0 \) as \(s \to 0^+ \), we may conclude that for any open neighborhood \(\mathcal{U}(a) \) of \(a \) in \(C^o(I^+, I^+) \), there exists an \(\alpha_s \in C^o(I^+, I^+) \cap \mathcal{U}(a) \) such that
\[
k(\alpha_s) = 0.
\]

We may modify the above example such that
\[
\alpha_s | \partial I^+ = \text{id}_{\partial I^+}
\]
and
\[
k(a_s) = 0.
\]

In fact, we may take a continuous self-mapping \(\varphi \) of \([\frac{-1}{2}, \frac{1}{2}] \) with \(k(\varphi) = \).
Take
\[\psi(x, t) = (1 - t)x + tx, \forall (x, t) \in \left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times [0, 1]. \]

Let
\[\alpha_s(x, s) = \begin{cases} (\psi(x, s), s), & 0 \leq s \leq 1, \ x \in \left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1}, \\ (\psi(x, -s), s), & -1 \leq s \leq 0, \ x \in \left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1}. \end{cases} \]

Since \(\alpha_0 \mid \partial \left(\left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I \right) = \text{id}_{\partial \left(\left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I \right)} \), there exists a continuous extension \(\alpha \) of \(\alpha_0 \) over \(I \) such that \(\alpha \left(\left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I \right) = \alpha_0 \) and
\[\alpha \mid I^* \left(\left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I \right) = \text{id}. \]

Since \(\left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I \) is an invariant set of \(\alpha \) we have
\[h(\alpha) \geq h(\alpha_0) = +\infty. \]

For \(x = (x', \cdots, x^{n-1}) \), denote \(|x| = \max_{1 \leq i \leq n} \{|x^i|\} \).

Take \(\beta(t) \) as above. Let
\[\alpha_s(x, s) = \begin{cases} (\psi(x, s), s + \varepsilon \beta(s)), & x \in \left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I, \ 0 \leq s \leq 1, \\ (\psi(x, -s), s + \varepsilon \beta(s)), & x \in \left[\frac{-1}{2}, \frac{1}{2} \right]^{n-1} \times I, \ -1 \leq s \leq 0, \\ (x, s + 2\varepsilon \beta(s)(1 - |x|)), & x \in \left(\frac{-1}{2}, \frac{1}{2} \right)^{n-1} \times I, \ s \in I. \end{cases} \]

Then we have \(Q(\alpha_s) = \partial I^* \) and \(\alpha_s \mid \partial I^* = \text{id} \).

Hence
\[h(\alpha_s) = 0. \]

Since \(\rho(\alpha_s, \alpha) \leq \varepsilon \), we have
\[\rho(\alpha_s, \alpha) \to 0 \text{ as } \varepsilon \to 0^+. \]

IV. Proof of Theorem 1

Let \(\varphi \in C^0(M, M) \) and \(B_\varepsilon(\varphi) = \{ f \in C^0(M, M) \mid \rho(f, \varphi) < \varepsilon \} \), \(\varepsilon > 0 \). In the proof we shall follow the same notations as Lemma 4.

By Lemmas 1—4, for \(B_\varepsilon(\varphi) \) there exist \(g = g_{\varepsilon/2} \in C^1(M, M) \cap B_{\varepsilon/2}(\varphi) \) and a
positive integer \(m \) and a point \(p = p_{i/2} \in M \) such that \(p \in P(g) \) and the period of \(g \) at \(p \) is \(m \), and \(g, m \) and \(p \) satisfy the conditions of Lemma 4.

Denote \(n = \dim M \geq 2 \), \(I_i^r = \{ x = (x^1, \cdots, x^n) \in \mathbb{R}^n : |x^i| < r, \ i = 1, \cdots, n \} \), \(0 < r \leq 1 \). Since \(I_i^r \) and \(E_i^r \) are diffeomorphic, we may assume \(E_i^r = I_i^r \).

For \(0 < r \leq \frac{1}{4} \), denote \(U_i(r) = u_i^{-1}(I_i^r), i = 0, 1, \cdots, m - 1 \). Then \(g \) satisfies

(a) \(g(U_i(r)) = U_{i+1}(r), i = 0, 1, \cdots (\text{mod } m) \).

(b) \(\tilde{g}_i = u_{i+1} \circ g \circ u_i^{-1} | I_i^r = \text{id}_{I_i^r}, i = 0, 1, \cdots (\text{mod } m) \).

For any \(\delta \in (0, 1) \), let \(\alpha \) and \(\alpha_0 \) be the mappings in the end of Sec II. Let

\[
\varphi(x) = r\alpha\left(\frac{1}{r} x\right), \ x \in I_i^r,
\]

\[
\varphi(x) = r\alpha\left(\frac{1}{r} x\right), \ x \in I_i^r.
\]

Then we have

(i) \(\varphi, \varphi_t \in C^0(I_i^r, \mathbb{R}) \),

(ii) \(\varphi(0) = +\infty, \varphi(\varphi_t) = 0 \),

(iii) \(\varphi_t | \partial I_i^r = \text{id}_{I_i^r}, \varphi_t | \partial I_i^r = \text{id}_{0^+} \).

We define

\[
G_i(x) = \begin{cases} u_i \circ \varphi \circ u_i(x), x \in \overline{U_i(r)} = U_i(r), i = 0, 1, \cdots (\text{mod } m), \\ g(x), x \in M \setminus \bigcup_{i=0}^{m-1} U_i(r). \end{cases}
\]

By the previous lemma, we may verify \(G_i \in C^0(M, M) \).

Since \(\rho(G_i, g) = \sup_{x \in U_i(x)} \{ d(G_i(x), g(x)) \} \)

we have \(\rho(G_i, g) \to 0 \) as \(r \to 0^+ \). Hence there exists an \(r_s, 0 < r_s \leq \frac{1}{4} \) such that

\(G_{r_s} \in B(r) \).

Now let \(0 < r \leq \frac{1}{4} \). Because \(\overline{U_i(r)} \) is an invariant subset of \(G_i^r \), there holds

\(\rho(G_i^r) = h(G_i^r \mid \overline{U_i(r)}) \).

However, \(G_i^r \mid \overline{U_i(r)} = u_i^{-1} \circ \varphi \circ u_i \mid \overline{U_i(r)} \) and \(h \) is a topological conjugate invariant; we have

\[
h(G_i^r \mid \overline{U_i(r)}) = h(\varphi_t).
\]

On account of \(h(\varphi_t) = m h(\varphi_r) \), we admit
\[h(G_r^*) = +\infty. \]

Hence

\[h(G_r) = \frac{1}{m} h(G_r^*) = +\infty. \]

For \(0 < r \leq \frac{1}{4} \) and \(\delta \in (0, 1) \), we define

\[G_{\delta,r}(x) = \begin{cases} w_{\delta} \circ w_{\delta} \circ \cdots \circ w_{\delta}(x), & x \in \overline{U}_i(r)i = 0, 1, \cdots (\text{mod } m), \\ g(x), & x \in M \setminus \left(\bigcup_{i=0}^{m-1} U_i(r) \right). \end{cases} \]

By the previous lemma, we may verify \(G_{\delta,r} \in C(M, M) \).

Denote

\[F_{\delta,r} = \bigcup_{k=0}^{\infty} \left(G_{\delta,r}^k \right) \left(\bigcup_{i=0}^{m-1} U_i(r) \right) \subset M. \]

Then we have

\[\mathcal{Q}(G_{\delta,r}^\infty) \subset M | F_{\delta,r}. \quad (\ast) \]

Hence

\[G_{\delta,r}^\infty | \mathcal{Q}(G_{\delta,r}^\infty) = g^m | \mathcal{Q}(G_{\delta,r}^\infty), \]

and \(\mathcal{Q}(G_{\delta,r}^\infty) \) is an invariant subset of \(g^m \). Then by \((\ast)\) we get

\[\mathcal{Q}(G_{\delta,r}^\infty) \subset \mathcal{Q}(g^m). \]

By the formulas

\[h(G_{\delta,r}^\infty) = h(G_{\delta,r}^\infty | \mathcal{Q}(G_{\delta,r}^\infty)) \]

and

\[h(g^m | \mathcal{Q}(G_{\delta,r}^\infty)) \leq h(g^m | \mathcal{Q}(g^m)) = h(g^m), \]

we have

\[h(G_{\delta,r}^\infty) \leq h(g^m). \]

By the formulas

\[h(G_{\delta,r}^\infty) = mh(G_{\delta,r}), \quad h(g^m) = mh(g), \]

we have

\[h(G_{\delta,r}) \leq h(g). \]

Fix \(r \in \left(0, \frac{1}{4}\right] \). Since \(\rho(w_r, w_{\delta, r}) \to 0 \) as \(\delta \to 0^+ \), we have

\[\rho(G_{\delta,r}, G_r) \to 0 \text{ as } \delta \to 0^+. \]

It follows that \(G_r \in U_m(M) \).

Summing up the above results, we have obtained a \(G_{\delta,r} \in U_m(M) \cap B_\varepsilon(q) \). This proves that \(U_m(M) \) is everywhere dense in \(C^2(M, M) \). Q.E.D.
The authors thank Profs. Liao Shantao and Qian Min for their help and encouragement, and the authors also wish to thank Zhou Zou-ling for suggestion of the paper written by Koichi Yano.

REFERENCES