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Abstract

We studied the rational realization problem for sub-hyperbolic
semi-rational branched coverings. By using the shielding ring
lemma, we are able to give a direct proof of CJS’s Theorem fol-
lowing the lines of the proof of Thurston’s Theorem given in the
paper of Douady-Hubbard.
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1 Introduction

Thurston’s Theorem in complex dynamical systems gives a topological
description of a critically finite rational map. A proof of this theorem
is an interesting application of the finite dimensional Teichmüller the-
ory. The reader may refer to Douady and Hubbard’s paper for this
proof or Appendix to get some idea about the proof. The statement
of Thurston’s Theorem can be summarized as follows: A critically fi-
nite branched covering of the two-sphere associated with a hyperbolic
orbifold is combinatorially equivalent to a unique rational map (up to
conformal conjugation) if and only if it has no Thurston’s obstruction.
McMullen [Mc] further showed that no Thurston’s obstruction is essen-
tially true for any rational map with a hyperbolic orbifold–only trivial
Thurston obstructions inside Siegel disks or Herman rings may occur for
a rational map with a hyperbolic orbifold (see [CJS1] in this proceedings
for a precise statement of McMullen’s Theorem). So a basic problem is
whether a branched covering having no essential Thurston obstruction is
combinatorially equivalent to a rational map?

Cui, Jiang, and Sullivan studied this problem in 1994 for a geometri-
cally finite branched covering. Local combinatorial structures, like com-
binatorial contraction and combinatorially invariant shrinking family of
curves, have been studied in [CJS1]. Furthermore, a counter-example of
a geometrically finite branched covering is constructed in [CJS1] by using
this study. The example has no Thurston obstruction but is not com-
binatorially equivalent to a rational map. Therefore a combinatorially
contracting property is introduced into the further study.

Following the study in [CJS1], a class of semi-rational branched cov-
erings are introduced in [CJS2]. More precisely, a semi-rational branched
covering is a geometrically finite branched covering whose periodic accu-
mulation points of post-critical orbits can be combinatorially normalized
into super-attracting, or attracting, or parabolic periodic points. Fur-
thermore, they proved that a semi-rational branched covering is combi-
natorially equivalent to a rational map if and only if it has no Thurston
obstruction. However, the uniqueness in the geometrically finite case
is quite different from the critically finite case. By using combinato-
rially invariant shrinking family of curves, it is proved in [CJS1] that a
semi-rational branched covering is always combinatorially equivalent to a
sub-hyperbolic semi-rational branched covering, which is a semi-rational
branched covering whose periodic accumulation points of post-critical
orbits are only super-attractive or attractive. Therefore, to study the
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rational realization of semi-rational branched covering, we only need to
study the class of sub-hyperbolic semi-rational branched coverings. In
order to have a well-defined rational realization problem in the class of
semi-rational sub-hyperbolic branched coverings, a CLH-equivalence is
introduced in [CJS2] (see also §2). The theorem proved in [CJS2] is that
a sub-hyperbolic semi-rational branched covering is CLH-equivalent to
a unique rational map (up to conformal conjugation) if and only if it
has no Thurston obstruction. The proof given in [CJS2] is by the study
of combinatorial properties of a sub-hyperbolic semi-rational branched
covering. An interesting point in the proof is to use a similar partition
technique like those used in Branner-Hubbard’s work [BH] in the study
of cubic polynomials and in Yoccoz’ work (refer to [Hu, Ji1]) in the study
of quadratic polynomials.

In this paper, we only concentrate in sub-hyperbolic semi-rational
branched coverings defined in [CJS2] and show a direct proof of CJS’s
Theorem following lines of the proof of Thurston’s Theorem given in
Douady and Hubbard’s paper [DH].

An essential difference between the studies of critically finite case and
geometrically finite case is the finite dimensional Teichmüller theory and
the infinite dimensional Teichmüller theory. Later one makes the study of
the problem harder. However, in both cases, following bounded geometry
properties should be studied first. These bounded geometry properties
enable us to have a similar study in both cases.

In the critically finite case, the base point of the Teichmüller space is
the Riemann sphere minus finite points. The branched covering induces
an operator on the Teichmüller space. Iterations of the operator produce
a sequence of sets of finite points in the Riemann sphere. The bounded
geometry in this case means that the sets of points move with a bounded
distance in the Riemann sphere (refer to [DH, Pi]).

In the geometrically finite case, the base point of the Teichmüller
space is the Riemann sphere minus infinite points. The branched cov-
ering induces an operator on the Teichmüller space too. Iterations of
the operator produce a sequence of sets of infinite points in the Riemann
sphere. In order to have a similar bounded geometry concept like that in
the critically finite case, we need to find a holomorphic disk about each
accumulation point. Note that we only need to find finitely many such
disks. These holomorphic disks should keep a definite size under itera-
tions of the operator. More importantly, there should have an annulus
with a definite modulus around each holomorphic disk to keep away the
rest of finitely many points from these holomorphic disks. To have this
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property, we prove our shielding ring lemma (see §2). After having this
lemma, the problem essentially becomes a problem in the finite dimen-
sional Teichmüller theory. So we can just follow main lines of the proof
of Thurston’s Theorem given in Douady-Hubbard paper [DH].

The article is organized as follows. In §2, we review the definition of
sub-hyperbolic semi-rational maps and prove the shield ring lemma. We
also state the main theorem in §2. In §3, we define the Thurston pull
back operator on the Teichmüller space and push forward operator on
quadratic differentials. We also define bounded geometry for Riemman
surfaces, which are the Riemann sphere munius finite number of disks and
points. We then give our direct proof of CJS’s Theorem. To make the
paper a self contained, we write down main ideas of a proof of Thurston’s
theorem in Appendix.

Further result and study. The shielding ring lemma is shown by the
first author(YJ) and then the rest is finished by the second author(GZ)
under supervision of the first author(YJ). So it is put in the second au-
thor(GZ)’s thesis [Zh] as Chapter 2. The origination of this research
is started in the preparation of a suitable and workable thesis problem
for the second author (GZ) by the first author (YJ). During this prepa-
ration, the first author (YJ) formulates a conjecture that a branched
covering of the two sphere without essential Thurston’s obstruction and
linearizable at Siegel disks and Herman rings with bounded type rota-
tion numbers and with finite number post-critical points outside Siegel
disks and Herman rings is CLH (combinatorially and local holomorphi-
cally) equivalent (see §3) to a rational map and unique up to holomorphic
conjugation. In this conjecture, one need assume that there are finitely
many branch points on the boundary of each Siegel disks or each Herman
rings. Our successful story is that the conjecture is solved partially for a
subclass of simple Siegel disk type topological polynomials which forms
the main body of the second author(GZ)’s thesis [Zh]. A simple Siegel
disk type topological polynomials is a branch covering in the conjecture
with a completely invariant point ∞ and only one linearizable Siegel disk
with bounded type rotation number. Many other problems like the mea-
sure and local connectivity of the Julia set of a simple Siegel disk type
polynomial are also studied from the combinatorial equivalence point of
view. The further study of this conjecture is still underway and remains
an interesting problem for us. During the formulation of the conjecture
mentioned in the last paragraph. The first author(YJ) had some discus-
sion with Professor Linda Keen. He would like very much to express his
thanks for her valuable advises. During this research, both authors got



Complex Dynamics and Related Topics 269

great help from Professors Guizhen Cui, Fred Gardiner, and Linda Keen,
they would like to express their thanks to them.

2 Sub-hyperbolic semi-rational maps

Suppose S2 is the two-sphere. Let f be an orientation preserving branched
covering. Then

Ωf = {x ∈ S2 | degx f > 1}
is called the set of branched points, where degxf means the local degree
of f at x. The set

Pf = ∪∞n≥1f
n(Ωf )

is called the post-critical set of f . The map f is called geometrically
finite if Pf has only finitely many accumulation points. In this case,
every accumulation point of Pf is periodic. The reason is the following.
Let P ′

f = {p1, · · · , pm} be all accumulation points. Then it is clear that
f(P ′

f ) ⊆ P ′
f . So every point is eventually periodic, i.e, for every p ∈ P ′

f ,

there are minimal integers l ≥ 0 and k ≥ 1 such that f l+k(p) = f l(p).
If l = 0, then p is periodic. So we only need to prove that l = 0 for
every p ∈ P ′

f . Suppose there is a p ∈ P ′
f such that l > 0. Assume

pi = f i−1(p), 1 ≤ i ≤ l+k. Then O = {pl+1, · · · , pl+k} is a periodic cycle.
So we can find a small number ε > 0 such that f(Bε(x)) ∩ Bε(y) = ∅ for
all x ∈ O and y ∈ P ′

f \ O, where Bε(·) means the disk of radius ε and
centered ·. Now let c ∈ Ωf such that fnk(c) → p = p1 for a subsequence
{nk}. Then fnk+l(c) → pl+1. Since {f i(c)}∞i=M ⊂ ∪x∈Ωf

Bε(x) for some
M > 0, {f i(c)}∞i=N ⊂ ∪x∈OBε(x) for some N ≥ M . This contradicts with
fnk(c) → p.

Let P1 be the standard Riemann sphere. Suppose f is geometrically
finite and suppose p ∈ P ′

f . Let k ≥ 1 be the period of f at p. Then we
say f is combinatorially contracting at p if there exist homeomorphisms
φ, ψ : S2 → P1 such that

• φ(p) = 0,

• φ is isotopic to ψ rel Pf , and

• (φ ◦ f ◦ ψ−1)◦k(z) = λz for some |λ| < 1 if degaf
◦p = 1 or (φ ◦ f ◦

ψ−1)◦k(z) = zd if degpf
◦k = d > 1.

In[CJS1, CJS2], the following theorem is proved. See Appendix for
definitions of Thurston obstruction and combinatorial equivalence.
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Theorem 1 (Cui-Jiang-Sullivan’s Theorem). A geometrically fi-
nite branched covering f is combinatorially equivalent to a rational map
if and only if f has no Thurston obstruction and f is combinatorially
contracting at every accumulation point of Pf .

From the study in [CJS1], in the study of the ”if” part of the above
theorem, we can assume the combinatorially contracting condition. So
a class of semi-rational maps and a class of sub-hyperbolic semi-rational
maps are defined in [CJS2] as follows. A geometrically finite branched
covering f is called semi-rational if

• f is holomorphic in a neighborhood of the set of accumulation
points P ′

f ;

• each cycle in P ′
f is either attractive or super-attractive or parabolic;

and

• each attracting petal associated with a parabolic cycle in P ′
f con-

tains a post-critical point.

Furthermore, if all cycles in P ′
f are either attractive or super-attractive,

then f is called a sub-hyperbolic semi-rational map. It is shown in [CJS1]
that a semi-rational branched covering is always combinatorially equiv-
alent to a sub-hyperbolic semi-rational branched covering. So the rest
proof of the ”if” part of Theorem 1 is just for sub-hyperbolic semi-rational
branched coverings.

Suppose f is a sub-hyperbolic semi-rational branched covering. For
each point z ∈ P ′

f , let k ≥ 1 be the period of f at z, there is an open
disk D(z) centered z such that

fk(w) = z + λ(w − z) + h.o.t, w ∈ D(z)

for some λ with 0 < |λ| < 1 or

fk(w) = z + (w − z)n + h.o.t

for some n ≥ 2, where h.o.t. means the higher order terms. By making
each D(z) small enough, we can assume D(z) and D(z′) are disjoint for
z 6= z′ ∈ P ′

f . Moreover, by taking D(z) smaller, we assume that D(z)\{z}
contains no critical value. Let P ′

f = {zi} and let {Di} be a collection of
corresponding disks.
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Lemma 1 (Shielding Ring Lemma). There is a collection {Di} such
that for each Di there is an annulus Ai attaching to it which is mapped
into some Dj by f and which contains no post-critical point.

Proof. Start with a collection of disks {Di} satisfying fki(Di) ⊂ Di where
ki is the period of the point in Di ∩ P ′

f . Let z1 ∈ P ′
f be a point with

period k > 0. Suppose {zi+1 = f i(z1)}k−1
i=0 is a periodic cycle. Let D be

the disk in the collection containing z1. Then fk(D) ⊂ D. Take an open
topological disk B with

fk(D) ⊂ B ⊂ D and (B \ f(D)) ∩ P ′
f = ∅.

Divide B \ fk(D) into k sub-annuli

E1, · · · , Ek

such that E1 attaches to fk(D) and Ei+1 attaches to Ei for i = 1, · · ·,
k − 1.

Let E0 = ∅. The new disk, which we still denote as Dj, about zj is

Dj = f j−1(f ◦k(D) ∪ (∪0≤i≤j−1Ei)).

The annulus Aj attaching at Dj is

Aj = f ◦j(Ej).

The above construction works for every periodic cycle. Then the new
collection of disks satisfies the lemma.

A collection of disks {Di} satisfying Lemma 1 are called standard
normal disks and corresponding annuli {Ai} are called shielding rings.
Henceforth, we will assume that f is a sub-hyperbolic semi-rational branched
covering with a fixed collection of standard normal disks {Di} and a fixed
collection of shielding rings {Ai}. In order to have a well-understood
problem for the rational realization of sub-hyperbolic semi-rational branched
covering maps, the CLH-equivalent is defined in [CJS1, CJS2]. (CLH
means combinatorially and locally holomorphically.) Two sub-hyperbolic
semi-rational maps f and g are CLH-equivalent if there is a pair of home-
omorphisms (φ, ψ) of the Riemann sphere P1 such that

• ψ is homotopic to φ rel Pf ,

• φf = gψ,
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• φ|Uf = ψ|Uf is holomorphic on some open set Uf ⊃ P ′
f .

After having the above result and notations, we are ready to give a
direct proof of the following theorem in [CJS2].

Theorem 2 (Cui-Jiang-Sullivan’s Theorem). Suppose f is a sub-
hyperbolic semi-rational map with P ′

f non-empty. Then f is CLH-equivalent
to a rational map R if and only if f has no Thurston obstruction. More-
over, the rational map R is unique up to holomorphic conjugation.

3 Thurston pull back operator on Beltrami

coefficients and push forward operator

on quadratic differentials

We keep using the notations in §2. Let P ′
f = {z1, · · · , zm} and Uf =

∪m
i=1Di. Denote

P1 = Pf \ Uf .

Then P1 is a set containing only finite number of points. Let

X = ∂Uf ∪ P1

Let M be the set of all the Beltrami coefficients on P1, which consists
of all measurable functions µ defined on the Riemann sphere with ||µ||∞ <
1. Consider the subset Mf ⊂M,

Mf = {µ ∈M | µ|Uf = 0}.
For each µ ∈ Mf , there is a unique quasi-conformal homeomorphism
φµ : P1 → P1 fixing 0, 1, and ∞ and having complex dilation µ. Without
loss of the generality, we can assume that 0, 1, and ∞ belong to Pf . Two
elements µ, ν ∈ Mf are said to be equivalent, denoted as µ ∼ ν, if φµ is
isotopic to φν rel X. Then the space of Mf/ ∼= {[µ]} is the Teichmüller
space, which we denote as Tf , with the base point (P1 \ Uf , X). The
Thurston pull back operator associate with f is the operator σf : Tf → Tf

defined as σf ([µ]) = [f ∗µ], where

f ∗(µ)(z) =
µf (z) + µ((f(z))θ(z)

1 + µf (z)µ(f(z))θ(z)

where µf = fz

fz
and θ(z) = fz

fz
. Note that for µ ∼ ν ∈ Mf , then φµ is

isotopic to φν rel X and φµ = φν on Uf is analytic. Since f(Uf ) ⊂ Uf and
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f is analytic on Uf , φµ ◦ f is isotopic to φν ◦ f rel X and φµ ◦ f = φν ◦ f
on Uf are analytic. Since f ∗µ and f ∗ν are the Beltrami coefficients of
φµ ◦ f and φν ◦ f , so f ∗µ ∼ f ∗ν ∈ Mf . Indeed, σf ([µ]) ∈ Tf for any
[µ] ∈ Tf . Furthermore, if γ(t) is a smooth curve in Tf , then σf (γ)(t) is
also a smooth curve in Tf .

Let γ : [0, 1] → Mf be a C1 Beltrami path and let φt = φγt be
the corresponding path of quasi-conformal homeomorphisms. For any
0 ≤ τ ≤ 1, φ∗(γ)(t) = [µφt◦φ−1

τ
] denotes the Beltrami path passing α0 =

[0] at τ . Let µ = γ(τ) and let φµ = φτ be the corresponding quasi-
conformal homeomorphism. Use Tµ to denote the Teichmüller space with
the base point (P1 \φµ(Uf ), φµ(X)). Denote η = γ′(τ) and ξ = dφµ∗(η) =
d
dt

(φµ∗(γ)(τ). The norm of ξ = ξ(z)dz
dz

is defined as

‖ξ‖ = sup
∣∣∣
∫ ∫

P1\φµ(Uf )

q(z)ξ(z)dz ∧ dz
∣∣∣

where the sup is taken over all the quadratic differentials q = q(z)dz2 on
P1 \ φµ(Uf ) such that

• All the poles of q are in φµ(P1) and simple,

• ∫ ∫
P1\φµ(Uf )

|q(z)|dz ∧ dz = 1.

Since φµ induces an isometric mapping between Tf and Tµ, so the norm
of η can be calculated as ‖η‖ = ‖ξ‖.

Similarly, let ν = f ∗(µ), η̃ = df ∗(η), and ξ̃ = dφν∗(η̃), then we have
‖η̃‖ = ‖ξ̃‖. Since the following diagram is commutative,

(P1, f−1(Pf ))
φν−→ (P1, g−1(Pg))

↓ f ↓ g

(P1, Pf )
φµ−→ (P1, Pg)

We have ξ̃ = dg∗(ξ), where g is a rational map. We can use the following
diagram to show the relation among η, η̃, ξ, and ξ̃.

η̃
dφν∗−→ ξ̃ q̃

↑ df ∗ ↑ dg∗ ↓ L
η

dφµ∗−→ ξ q

We conclude the above as follows. For each quadratic differential q̃(w)dw2

on P1 \ φν(Uf ), there is a unique quadratic differential q(z)dz2 on P1 \
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φµ(Uf ) such that

∫ ∫

P1\φµ(Uf )

ξ(z)q(z)dz ∧ dz =

∫ ∫

P1\φν(Uf )

ξ̃(w)q̃(w)dw ∧ dw. (1)

Actually, q = δg∗q̃ = Lq̃(z)dz2 is given by

Lq̃(z) =
∑

g(w)=z

q̃(w)

[g′(w)]2

distributively. Note that L is called a transfer operator (see [Ji2]). Here
we call δg∗ the push forward operator.

4 Bounded geometry and contracting prin-

ciple

Theorem 2 is equivalent to the statement that σf has a unique fixed point
in Tf . The reason is the following. If σf has a unique fixed point [µ] in Tf ,
then ν = f ∗µ ∈ [µ]. Let φµ and φν be the corresponding quasi-conformal
homeomorphisms. Then φµ = φν on Uf is analytic, φµ is homotopic to
φν rel Pf , and g = φµfφ−1

ν is a rational map. Therefore, our purpose now
is to find a unique fixed point of σf .

Let µ0 = 0 and µn = f ∗µn−1. Starting from α0 = [µ0], define αn =
[f ∗µn−1] for all integers n ≥ 1. If we can show σf is strictly contracting
on {αn}, then it has a unique fixed point because Tf is complete and
σn is weakly contracting. The derivative dσf maps η to η̃. So to show
σf is strictly contracting, we need only to prove that there is a uniform
number 0 < δ < 1 such that

‖η̃‖ = ‖dσfη‖ < δ‖η‖ (2)

for all η. As we have seen that ‖η‖ = ‖ξ‖ and ‖η̃‖ = ‖ξ̃‖. So let
q̃ = q̃(w)dw2 and q = q(z)dz2 = δg∗q̃ = Lq̃(z)dz2 be the corresponding
quadratic differentials in Equation 1. Then

‖q‖ =

∫ ∫

P1\φµ(Uf )

|q(z)|dz ∧ dz =

∫ ∫

P1\φν(Uf )

∣∣∣
∑

g(w)=z

q̃(w)

[g′(w)]2

∣∣∣dz ∧ dz

≤
∫ ∫

P1\(φν(Uf )∪iφν(Ai))
|q̃(w)|dw ∧ dw
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=

∫ ∫

P1\φν(Uf )

|q̃(w)|dw ∧ dw −
∫ ∫

∪iφν(Ai)

|q̃(w)|dw ∧ dw

= ‖q̃‖ −
∫ ∫

∪iφν(Ai)

|q̃(w)|dw ∧ dw.

Assume ‖q̃‖ = 1. Then

‖q‖ ≤ 1−
∫ ∫

∪iφν(Ai)

|q̃(w)|dw ∧ dw.

Thus Equation 2 holds if we can find a uniform ε > 0 such that

∫ ∫

φν(∪iAi)

|q̃(w)|dw ∧ dw > ε.

Let φn = φµn be the sequence of corresponding quasi-conformal home-
omorphisms. Let m0 = #(P1).

Lemma 2 (Bounded Geometry). Let Λ = P1 ∪ {Di, Ai, 1 ≤ i ≤ m}.
We say Λ is of bounded geometry if there exists a uniform δ > 0 such
that

• d(φn(zi), φn(Aj)), d(φn(Ai), φn(Aj)), d(φn(zi), φn(zj)) > δ for zi 6=
zj ∈ P1 and Ai 6= Aj ∈ Λ and

• φn(Di) contains a disk with radius δ and mod(φn(Ai)) > δ for all
Ai ∈ Λ.

We have that

Lemma 3 (Bounded Geometry Implies Contracting Principle).
Suppose Λ has bounded geometry. Then there exists a uniform ε >

0, dependent only on m,m0, δ, such that for any quadratic differential
q(z)dz2 on P1\φn(Uf ), with possible simple poles at some φn(zi) ∈ φn(P1),
satisfying ∫ ∫

P1\φn(Uf )

|q(z)|dz ∧ dz = 1,

we have ∫ ∫

∪φn(Ai)

|q(z)|dz ∧ dz > ε.
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Proof. Without loss of generality, we assume ∞ ∈ D1. We prove the
lemma by the contradiction. Suppose there is a sequence of quadratic
differentials {qn = qn(z)dz2}∞n=1 with

qn(z) =
∑

16i6m0

ai,n

z − φn(zi)
+ gn(z)

such that

• ∫ ∫
P1\φn(Uf )

|qn(z)|dz ∧ dz = 1 for all n ≥ 1,

• ∫ ∫
∪jφn(Aj)

|qn(z)|dz ∧ dz → 0 as n →∞, and

• gn(z) is holomorphic on P1 \ φn(Uf ).

Since ∫ ∫

∪iφn(Aj)

|qn(z)|dz ∧ dz → 0 as n →∞,

we can take Γn = {γ1,n, · · · , γm,n} where γj,n ⊂ φn(Aj) is a simple closed
curve homotopic to the boundary of φn(Aj) such that

∫

Γn

|qn(z)|dz → 0 as n →∞.

Since φn on every Aj is holomorphic, the modulus of φn(Aj) is un-
changed with n. From the bounded geometry, each Dj contains a disk
with a fixed radius and Aj attaches at Dj, Aj has a fixed thickness. By
taking a subsequence if necessary, we can assume φn(Dj) and φn(Aj)
converges to a disk Ej and an annulus Bj in the Carathéodory topology
such that every Ej contains a disk with a fixed radius and mod(Bj) =
mod(Aj). Also we can assume every γj,n converges to γj in the Carathéodory
topology. Let Γ = {γj}.

From the bounded geometry we can assume by take a subsequence
zi,n = φn(zi) ∈ φn(P1) converges to zi,∞ for every i. So we get a limiting
Riemann surface P1 \ (Uf,∞ ∪P1,∞) where Uf,∞ = ∪jEj and P1,∞ = {zi}.

For any z ∈ P1 \ φn(Uf ∪ P1),

gn(z) =
1

2πi

∫

Γn

gn(ξ)

ξ − z
dξ =

1

2πi

∫

Γn

qn(ξ)

ξ − z
dξ− 1

2πi

∑
1≤i≤m0

∫

Γn

ai,n

(ξ − zi,n)(ξ − z)
dξ

=
1

2πi

∫

Γn

qn(ξ)

ξ − z
dξ
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since
∫

Γn

ai,n

(ξ−zi,n)(ξ−z)
dξ = 0. Therefore, gn(z) → 0 as n → ∞ on any

compact set in P1 \ (Uf,∞ ∪ P1,∞). This implies that
∫

Γn

‖
∑

16i6m0

ai,n

z − zi,n

‖dz → 0, as n →∞.

We claim that ai,n → 0 as n → ∞. Let an = maxi{|ai,n|}. If there is a
constant b > 0 such that an ≥ b for at least a subsequence of n. Then
for this subsequence we take bi,n = ai,n/an. Then maxi{|bi,n|} = 1 and

∫

Γn

‖
∑

16i6m0

bi,n

z − zi,n

‖dz → 0 as n →∞.

Every bi,n converges to a number bi as n goes to infinity and maxi{|bi|} =
1. This implies that

∫

Γ

‖
∑

16i6m0

bi

z − zi,∞
‖dz = 0.

Thus,
∑

16i6m0

bi

z−zi,∞
= 0 on Γ. This implies each bi = 0. This contra-

dicts to max{|bi|} = 1. We proved the claim.
Since gn(z) → 0 and every ai,n → 0 as n → ∞, this contradicts to

‖qn‖ =
∫
P1\φn(Uf∪P1)

|qn(z)|dz∧dz = 1. (For fix n, gn(z) may go to infinity

as z tends to the boundary of φn(Uf ). But note that each Bi has a fixed
thickness and we assume that

∫
∪iφn(Ai)

|qn(z)|dz∧dz → 0 as n →∞.)

Let R = P1 \ (Uf ∪ P1), we need to prove that φn(R) has bounded
geometry for all n = 1, 2, · · ·. This is equivalent to prove that the length
of the simple closed geodesics in φn(R \ P1) has a uniform positive low
bound for all n. Note that since f is holomorphic on Uf , for each disk
Di, if its center is attractive but not super-attractive, then critical orbits
are attracted to it in a bounded geometry fashion. So any non-peripheral
close curve in P \ Pf inside Di should have a certain length. From this
fact, Koebe Theorem, and Theorem 6.3 in [DH], any short simple closed
geodesic in φn(P1 \ Pf ) is either lies in φn(R) or lies deeply in a super
attracting disk, which is a disk of φn(Uf ).

For each disk D of Uf , let a be the center of D and b be a point
in D ∩ Pf such that d(a, b) > αdiam(D) for some α > 0. Let P2 =
P1 ∪ {a, b ∈ D | D ∈ Λ}.

For each simple closed curve γ ∈ R, φ(γ) is a closed curve in the
Riemann surface P1 \ φ(P2). We use ‖γ‖φ,P2 to denote the hyperbolic
length of the unique closed geodesic homotopic to φ(γ) in P1 \ φ(P2).
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Lemma 4. There exists a uniform δ > 0 such that ‖γ‖φn,P2 > δ for all
simple closed curves in P1 \ P2 and all n = 1, 2, · · ·.

Denote
Fδ = {[γi] | γi ⊂ R, ‖γi‖φn0 ,P2 < δ}

Before we prove Lemma 4, we first prove that

Lemma 5. For δ small enough, if there is a n0 > 0 such that the family
Fδ is not empty, then Fδ must be a f -stable family.

Proof. Let γ ∈ Fδ and γ′ be a non-peripheral component of f−1(γ). Then
γ′ must be in R. Let P3 = P2 ∪ f(P2). Since φn is univalent in Uf , there
exists a number K > 1 independent of n and γ such that

‖γ‖φn,P3 < K‖γ‖φn,P2

On the other hand, we have

‖γ′‖φn+1,P2 < d‖γ‖φn,P3 ,

where d is the degree of f . So we get

‖γ′‖φn+1,P2 < dK‖γ‖φn,P2

If δ is small enough, by Lemma A9 in Appendix (note that φn is holo-
morphic on Uf ), we know γ′ ∈ Fδ. Therefore Fδ is a f -stable family.

Proof of Lemma 4. By lemma A6 in Appendix, any two simple closed
geodesics in φn(P1 \ P1) whose spectra > A = − log log(

√
2 + 1) are

disjoint. Therefore there exists a k dependent only on f such that for all
n = 1, 2, · · ·, there are at most k simple closed geodesics whose spectra
greater than A.

Similar to Appendix, for each f -stable family F , we can define the
Thurston linear transformation and it’s associated linear transformation
matrix A. Since the size of A is bounded by k and each entry of A can
only be one of the finite values, so there are only finite many such linear
transformation matrixes. Since f has no Thurston obstruction, so we
have a uniform number m such that

‖Am‖ ≤ 1

2

for any Thurston transformation A associated to a f -stable family.
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When δ is small enough, By Lemma 5, we know Fδ is a f -stable
family. Let Fn be the family consists of the non-peripheral components
of the pre-image of Fδ by f ◦n in P1 \ P2.

Define

‖Fn‖ =
∑
γ∈Fδ

1

‖γ‖φn,P2

.

We will prove that ‖Fn‖ has a positive lower bound for all n = 1, 2, · · ·.
This will imply Lemma 4. Note Fm be the family consisting of all the
non-peripheral components of the pre-image of Fδ by f ◦m in P1 \ P2.
Denote Y = P2∪f ◦m(P2) and Ym = f−m(Y ). Then P2 ⊂ Ym. By Lemma
A7 in Appendix,

Fm ≤
∑

γ′∈Fm

‖γ′‖−1
φm+n0 ,Ym

+ M

where M is a constant dependent only on f and m.
On the other hand, from the following diagram,

(S2, Ym)
φm+n0−→ (P1, φm+n0(Ym))

↓ f ◦m ↓ gm

(S2, Y )
φn0−→ (P1, φn0(Y ))

where gm : (P1, φm+n0(Ym)) → (P1, φn0(Y )) is a holomorphic covering.
We have

∑

γ′∈Fm

‖γ′‖−1
φm+n0 ,Ym

=
∑
i,j

bij‖γi‖−1
φn0 ,Y ≤

∑
j

bij
1

‖γi‖φn0 ,P2

where bij is exactly the (i, j) entry in Am. Since ‖Am‖max ≤ 1/2,
∑

j bij ≤
1
2
. So ∑

γ′∈Fm

‖γ′‖−1
φm+n0,Ym

≤ 1

2
‖F0‖.

Therefore,

‖Fm+n0‖ ≤
1

2
‖F0‖+ M.

Now for any n ≥ n0, write n = km + j, where 0 ≤ j < l − 1 and k ≥ 1.
Then we have

‖F0‖ ≤ 1

2k
(‖Fj‖ − 2M) + 2M.

This implies that ‖Fn‖ has a uniform upper bound for all n ≥ 1. There-
fore there is a positive lower bound for ‖γ‖φn,P2 for all γ ∈ Fn and all
n ≥ 1. This completes the proof of Lemma 4.
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Proof of Theorem 2. The Thurston pull back operator αf is strictly con-
traction on {[µn]}. So [µn] converges to a unique fixed point of αf . Thus,
there is a unique rational map combinatorially equivalent to f .

5 Appendix. Thurston’s Theorem

An orientation preserving branched covering f with degree greater than
one is said to be critically finite if Pf is finite.

Two branched coverings f and g are equivalent if there exist homeo-
morphisms φ, ψ : (S2, Pf ) → (S2, Pg) such that the diagram

(S2, Pf )
ψ−→ (S2, Pg)

↓ f ↓ g

(S2, Pf )
φ−→ (S2, Pg)

commutes and φ is isotopic to ψ rel Pf .
If γ is a simple closed curve on S2 \ Pf , then the set f−1(γ) is a

union of disjoint simple closed curves. If γ moves continuously, so does
each component of f−1(γ). A simple closed curve γ is non-peripheral if
each component of S2 \ γ contains at least two points of Pf . Consider a
multi-curve

Γ = {γ1, · · · , γn}
of simple, closed, disjoint, non-homotopic, and non-peripheral curves on
S2 \ Pf . It is said to be f -stable if for any γ ∈ Γ, all the non-peripheral
components of f−1(γ) are homotopic in S2 \ Pf to elements of Γ. For
each f -stable multi-curve Γ, define a linear transformation,

fΓ : RΓ → RΓ,

as follows: Let γi,j,α be the components of f−1(γj) homotopic to γi in
S2 \ Pf and di,j,α = degf |γi,j,α

: γi,j,α → γj.
Then

fΓ(γj) =
∑
i,α

1

di,j,α

γi.

Since the matrix of fΓ is non-negative, there exist a largest eigenvalue
λ(Γ, f) ∈ R+ and a correspondent non-negative eigenvector. A multi-
curve Γ is called a Thurston obstruction if λ(Γ, f) ≥ 1.
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Lemma A1. The linear transformation fΓ commutes with the iteration,
i.e.,

(fn)Γ = (fΓ)n.

Let vf : S2 → Z+ ∪ {0} be the minimal positive function such that

• vf (x) = 1 for all x /∈ Pf .

• vf (x) is the integer multiple of vf (y) · degyf for all y ∈ f−1(x).

Then Of = (S2, vf ) is called an orbifold . It is called hyperbolic if

χ(Qf ) = 2−
∑

x∈S2

(1− 1

vf (x)
) < 0.

Thurston proved the following remarkable theorem.

Theorem A1 (Thurston’s Theorem). A critically finite orientation-
preserving branched covering f with hyperbolic Of is combinatorially equiv-
alent to a unique rational map (up to conformal equivalence) if and only
if f has no Thurston obstruction.

We use P1 to denote the two-sphere S2 with the standard complex
structure. The Teichmüller space Tf is the Teichmüller space with the
base point P1 \ Pf . It can be defined as

1. the space of smooth complex structures on S2 module the equivalent
relation that µ ∼ ν if µ = h∗ν for some diffeomorphism h : S2 → S2

with h|Pf
= id and h isotopic to the identity rel Pf or

2. the space of diffeomorphisms φ : (S2, Pf ) → (P1, φ(Pf )) module the
equivalent relation φ ∼ ψ if there exists an analytic isomorphism
h : P1 → P1 such that the diagram

(S2, Pf )
ψ−→ (P1, ψ(Pf ))

↓ id ↓ h

(S2, Pf )
φ−→ (P1, φ(Pf ))

Let M be the space of all measurable functions µ defined on P1 with
‖µ‖∞ < 1. Here µ is called a Beltrami coefficient. By the measurable
Riemann mapping theorem, for each µ ∈ M, there exists a unique qua-
siconformal homeomorphism φ : P1 → P1 which fixes 0, 1,∞ such that
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µ(z) = φz/φz. A Beltrami path is a piecewise smooth map γ : [0, 1] →M.
We use φt to denote the correspondent path of quasiconformal homeomor-
phisms which fixes 0, 1 and ∞. Let φ : P1 → P1 be any quasiconformal
homeomorphism, the pull forward of φt by φ is defined as

φ∗(φt) = φt ◦ φ−1.

We use φ∗γ(t) to denote the Beltrami coefficient of φ∗(φt). Let ξ = γ′(t)
be the tangent vector of γ(t) at t, we use dφ∗ξ to denote the tangent
vector of φ∗γ(t) at t. Now we take φ = φt0 and define the Teichmüller
norm of ξ (with respect to Tf ) as

‖ξ‖ = sup

∫ ∫

P1

q(z)dφ∗ξdzdz

where sup is taken over all quadratic differentials q(z)dz2 on (P1, φ(Pf ))
with ∫ ∫

P1

|q(z)|dzdz = 1

and φ(Pf ) the set of poles. Since

∫ ∫

P1

|q(z)|dzdz = 1,

any pole of q(z) must be simple. For any two elements µ and ν in Tf ,
the Teichmüller distance between µ and ν is given by

dT (µ, ν) = inf{
∫
‖γ′(t)‖dt},

where inf is taken over all the piecewise smooth Beltrami path connecting
µ and ν. The reader may refer to [Ga, §7.1] for the above.

Let f be a critically finite orientation-preserving branched covering.
Then there exists a C1 branched covering g such that

(i) f is combinatorially equivalent to g and

(ii) gz/gz is defined almost everywhere and ‖gz/gz‖ ≤ δ < 1 for some
δ > 0.

Therefore, we can always assume that µf = fz/fz is defined almost ev-
erywhere and ‖µf (z)‖ ≤ k < 1 for some k > 0.
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For each Beltrami differential µ on P1, we define the pull back of µ
by f as

f ∗(µ)(z) =
h(z) + µ((f(z))θ(z)

1 + h(z)µ(f(z))θ(z)

where θ(z) = fz/fz. Clearly, the pull back of each piecewise C1 Beltrami
path is still a piecewise C1 Beltrami path. Now let µ be a Beltrami
differential on P1 and ν = f ∗(µ). Let φµ and φν be the Beltrami solutions
with µ and ν fixing 0, 1, and ∞. The following diagram holds,

(S2, f−1(Pf ))
φν−→ (P1, φν(f

−1(Pf )))
↓ f ↓ g

(S2, Pf )
φµ−→ (P1, φµ(Pg))

where g is a rational function. Here we call φν the pull back of φµ by f .
Let γ(t) be a smooth Beltrami path passing though µ, then the pull back
f ∗γ(t) is a smooth Beltrami path which passes though ν. Let η be the
tangent vector of γ(t) at µ, then η̃ = df∗η is the tangent vector of f ∗γ(t)
at ν. Let ξ = dφµ∗η and ξ̃ = dφν∗η̃. We have the following diagram,

η̃
dφν∗−→ ξ̃

↑ df ∗ ↑ dg∗

η
dφµ∗−→ ξ

Let q̃ = φ̃(w)dw2 be the quadratic differential on (P1, φν(Pf )). The
push forward of q̃ by g is the quadratic differential q = Lgφ̃(z)dz2 on
(P1, φµ(Pf )) where

Lφ̃(z) =
∑

g(w)=z

φ̃(w)

[g′(w)]2
.

We use q = δg∗(q̃) to denote the push forward quadratic differential.
Note that Lgφ̃(z) is a transfer operator (see [Ji2]). By the above formula,
we have

< q̃, ξ̃ >=< q, ξ > .

Therefore ‖ξ̃‖ 6 ‖ξ‖ and the pull back will not increase the Teichmüller
length of the Beltrami path.

Starting from the standard complex structure µ0 = 0, we can define
a sequence of pull back complex structures µn = f ∗(µn−1) for n > 1.
Consequently, we have φn, ηn = df ∗ηn−1, ξn = dφµn−1∗ηn−1, and qn−1 =
δg∗n−1(qn) for n > 1. We call {φn} the pull back sequence.
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Consider any composition of two consecutive pull backs in the follow-
ing diagram,

ηn+2
dφn+2∗−→ ξn+2

↑ df ∗ ↑ dg∗n+1

ηn+1
dφn+1∗−→ ξn+1

↑ df ∗ ↑ dg∗n
ηn

dφn∗−→ ξn

Lemma A2. ‖δg∗nδg∗n+1qn+2‖ < ‖qn+2‖. Therefore, ‖ξn+2‖ < ‖ξn‖.
For the proof of this lemma, see Proposition 3.3 of [DH].

Lemma A3. Let X ⊂ P1 be a finite subset such that 0, 1,∞ ∈ X. Let
m be the cardinality of X and suppose m ≥ 4. For any a > 0, if all
the simple closed geodesic in P1 \ X has length greater than a then the
spherical distance between any two distinct points in X has a positive
lower bound which depends only on a and m.

Proof. First we will show that the spherical distance between ∞ and any
finite point in X has a positive low bound which is dependent only on
a and m. Let X = {x1, · · · , xm−1} and xm = ∞. Suppose |x1| ≤ · · · ≤
|xm−1|. Let M = |xm−1|. Since x2 ≤ 1, we have

∏
2≤i≤m−2

|xi+1|
|xi| =

|xm−1|
|x2| ≥ M.

So

max{|xi+1|
|xi| } ≥ M

1
m−3 .

Let
Ai = {z ∈ P1

∣∣∣ |xi| < z < |xi+1|}.
Then we have an integer i0 > 0 such that

mod(Ai0) ≥
logM

2π(m− 3)
.

Therefore the unique simple closed geodesic γ in Ai0 has hyperbolic length

‖γ‖Ai0
=

π

mod(Ai0)
≤ 2π2(m− 3)

logM
.
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Since
‖γ‖Ai0

≥ ‖γ‖P1\X ≥ a,

This implies that

M ≤ e
2π2(m−3)

a .

So the spherical distance between ∞ and any finite point in X has a
positive low bound which depends only on a and m.

Now we will show that the spherical distance between any two fi-
nite points in X has a positive low bound dependent only on a and m.
Without loss of generality, we assume

d(x1, x2) = min
xi 6=xj

{d(xi, xj)} and d(x1, xi) ≤ d(x1, xi+1)

for i = 1, · · · ,m− 1. Then

∏
2≤i≤m−2

d(xi+1, x1)

d(xi, x1)
=

d(xm−1, x1)

d(x2, x1)
≥ max{ d(x1, 0)

d(x1, x2)
,

d(x1, 1)

d(x1, x2)
} ≥ 1

2d(x1, x2)
.

Thus we have an integer i0 > 0 such that

mod(Bi0) ≥
log 1

2d(x1,x2)

2π(m− 3)

where
Bi0 = {z ∈ P1 | d(x1, xi0) < d(x1, z) < d(x1, xi0+1)}.

Let η be the unique simple closed geodesic in Bi0 . Then we have

‖η‖Bi0
=

π

mod(Bi0)
≤ 2π2(m− 3)

log 1
2d(x1,x2)

.

Since
‖η‖Bi0

≥ ‖η‖P1\X ≥ a,

again we have

d(x1, x2) ≥ 1

2
e−

2π2(m−3)
a .

This implies the spherical distance between any two finite points in X
has a positive low bound dependent only on a and m.
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Let Rd be the set of all the rational functions with degree d > 1. For
a sequence {fn} ⊂ Rd and f ∈ Rd, we say fn → f if fn is convergent
to f uniformly in the spherical metric. Therefore we have a topological
space Rd. We define an equivalent relation in Rd as follows: for any f
and g in Rd, we say f is equivalent to g if f = h1 ◦ g ◦ h2 for some linear
transformation hi, i = 1, 2. We denote the quotient space by Sd. For
a > 0, let

Fd,a = {[f ] ∈ Sd | there is a f ∈ [f ] such that d(x, y) ≥ a for all distinct critical

values x and y of f}
Lemma A4. Fd,a is compact.

Proof. For f ∈ Fd,a, we use X to denote the set of its critical values.
If |X| = 1, the number of the pre-images of the critical value would be∑

di ≥
∑

(di − 1) + 1 = 2d − 1. So we get d ≥ 2d − 1 and therefore
d ≤ 1 which is a contradiction with d > 1. If |X| = 2, f is equivalent
to zd. So Fd,a consists of one element and must be compact. So we need
only consider the case when |X| > 3. By a composition with a linear
transformation on the left and right, we can assume both X and f−1(X)
contain 0, 1,∞.

Any simple closed geodesic in P1 \ X has length bigger than a fixed
constant only depending on a. (The fixed constant is independent of
f ∈ Fd,a, refer to [Le, Chapter 1].) Since f : P1 \ f−1(X) → P1 \X is a
covering, any simple closed short geodesic in P1 \f−1(X) will be mapped
to a shorter closed geodesic in P1\X. So the length of the closed geodesic
in P1 \ f−1(X) has a positive low bound. Since f−1(X) contains 0, 1,∞,
so by Lemma A3, we have a constant b > 0 (only depends on a) such
that d(w, v) > b for any w 6= v ∈ f−1(X). For any sequence fn in Fd,a,
by taking a subsequence we can assume Xn → X and f−1

n (Xn) → Y .
Since Xn contains 0, 1,∞, so {fn} is normal in P1 \Y . Let g be the limit
point of any convergent subsequence fnk

of {fn}. Then g is holomorphic
in P1 \ Y . Clearly any point in Y can not be an essential pole of g, so
g must be a rational function. Now we show that fnk

→ g uniformly on
the sphere under the spherical metric. For each x ∈ X, there is a small
open disk centered at x with boundary circle γ such that the closure of
the disk does not contain any other points in X. We denote this disk
by D(γ). We can take D(γ) small enough such that any component of
g−1(D(γ)) must be an open topological disk contains only one point y
in Y with a smooth boundary curve η. We denote such a component by
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D(η). We have g : η → γ a covering with degree deg gy. Since fnk
→ g

uniformly in any compact subset of P1\Y , therefore, as k is large enough,
we have ηnk

near η such that fnk
: ηnk

→ γ is a covering with the same
degree as g : η → γ. Since when k is large enough, D(ηnk

) contains only
one point in f−1

nk
(Xnk

), so fnk
: D(ηnk

) → Dγ is a branched covering with
the same degree as g : D(η) → D(γ). Therefore fnk

→ g uniformly on
the whole sphere. So g is rational map of degree d and dist(x, y) ≥ a for
any two distinct critical values of g. Therefore g ∈ Fd,a. This completes
the proof that Fd,a is compact.

Now we can have that

Lemma A5. For the pull back sequence {φn}, if there exists a constant
a > 0 independent of n such that the hyperbolic length of any simple
closed geodesic in P1 \ φn(Pf ) is greater than a, then the pull back uni-
formly contracts the Teichmüller metric on Tf , and therefore, {φn} is
exponentially convergent in the Teichmüller space Tf .

Proof. Note that we have

(S2, Pf )
φn+2−→ (P1, φn+2(Pf ))

↓ f ↓ gn+1

(S2, Pf )
φn+1−→ (P1, φn+1(Pf ))

↓ f ↓ gn

(S2, Pf )
φn−→ (P1, φn(Pf ))

By Lemma A2,
‖δg∗nδg∗n+1qn+2‖ < ‖qn+2‖

for any quadratic differential qn+2 on P1 \ φn+2(Pf ). Since the set of
poles of qn is contained in φn(Pf ), the space the space of such quadratic
differentials satisfying ‖q‖ = 1 is compact. We have the biggest 0 < bn <
1 such that

‖δg∗nδg∗n+1qn+2‖ ≤ (1− bn)‖qn+2‖.
Let

b0 = inf{bn} ≥ 0.

Al quadratic differentials qn+2 are contained in a compact set by the
assumption and Lemma A3, and the family of {gn} is a compact family
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by Lemma A4 and the assumption. Therefore we can assume qn+2 → q,
gn → h1 and gn+1 → h2 such that

b0 = 1− ‖δh∗1δh∗2q‖
‖q‖

Now by Lemma A2, we get b0 > 0.

We list two lemmas in hyperbolic Riemann surfaces. Let S be a
hyperbolic Riemann surface. A spectrum of S is defined as w(γ) =
− log l(γ), where γ is a closed geodesic of S. Let A = − log log(

√
2 + 1).

Lemma A6. If the spectrum w(γ) > A, then γ must be a simple closed
curve. And any two such geodesics are disjoint.

For the proof, see Corollary 6.6 and Proposition 6.7 in [DH]. From
now on, we say a closed geodesic γ is short if w(γ) > A.

Lemma A7. Let X ⊂ S be a finite set with |X| = p. Let γ be a short
closed geodesic in S. Let S ′ = S \ X. Let γi, i = 1, · · · , n, be all short
closed geodesics on S ′ which are homotopic to γ in S. Then

∣∣∣
∑

16i6n

1

l(γi)
− 1

l(γ)

∣∣∣ < C(p),

where C(p) is a constant only dependent on p.

For the proof, see Theorem 7.1 in [DH]. Let γ ⊂ S2 \ Pf be a simple
closed curve. Let φ : S2 → P1 be a quasi-conformal homeomorphism.
Consider the hyperbolic Riemann surface P1 \φ(Pf ). Let ξ be the unique
simple closed geodesic in the homotopy class of φ(γ). We define the
φ-norm ‖γ‖φ of γ to be the hyperbolic length of ξ in P1 \ φ(Pf ). Fur-
thermore, for a subset X ∈ S2 and a simple closed curve γ ∈ S2 \X, we
use ‖γ‖φ,X to denote the hyperbolic length of the unique simple closed
geodesic homotopic φ(γ) in P1 \ φ(X).

Lemma A8. For any simple closed curve γ ⊂ S2 \ Pf , the map τ :
T (S2, Pf ) → R defined by [φ] → log‖γ‖φ,Pf

is a Lipshitz map with Lipshitz
constant 2.

For the proof of this lemma, see Proposition 7.2 in [DH]. Now we
mention the gap lemma for the set of spectra of a Riemann surface. Sup-
pose P is a finite set in S2. Let p = #(P ) > 3. For any quasiconformal
map φ : (S2, P ) → (P1, φ(P )). Let Sp(φ) = {w(γ)} be the set of all
spectra of S. Then Sp(φ) ∩ [A,∞) is a discrete set and (A,∞) \ Sp(φ)
consists of intervals. Each interval is called a gap.
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Lemma A9. There is a sequence of positive numbers Jk = Jk(p) →∞ as
k →∞ such that for any quasi-conformal map φ : (S2, P ) → (P1, φ(P )),
there is a smallest gap Ik = Ik(φ) in (A,∞) with length greater than Jk.

Now consider the pull back sequences {φn} starting from φ0 = id.

Lemma A10. Suppose f has no Thurston obstruction. Then there exists
a positive number a such that

‖γ‖φn > a

for for all simple closed curves γ ⊂ S2 \ Pf and all n = 1, 2, · · ·.
Proof. Without lost of generality, we assume f is a C1 (or quasi-regular)
covering. Since there can only be finitely many distinct Thurston linear
transformations, so by Lemma A1, we have a universal number m such
that

(fΓ)m = Am = (bij)

with ‖Am‖ < 1
2

for any f -stable multi-curve Γ.
For ε > 0, if there is a n0 > 0 such that

{γ ⊂ S2 \ Pf | ‖γ‖φn0
< ε} 6= ∅,

By Lemma A10, as long as ε small enough, there is an a(ε) > 0 such that

F = {γ ⊂ S2 \ Pf | ‖γ‖φn0
< a(ε)} 6= ∅

is a f ◦m− stable family.
Let Fn be the family consists of the non-peripheral components of the

pre-image of F by fn. Define

||Fn|| =
∑
γ∈Fn

1

‖γ‖φn+n0

.

Let Pm = f−m(Pf ). We have

(S2, Pm)
φm+n0−→ (P1, φm+n0(Pm))

↓ f ◦m ↓ gm

(S2, Pf )
φn0−→ (P1, φn0(Pf ))

Since
gm : (P1, φm+n0(Pm) → (P1, φn0(Pf ))
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is a holomorphic covering, so

∑

ξ∈Fm

1

‖ξ‖φm+n0 ,Pm

=
∑
i,j

bij
1

‖γi‖φ0

6 1

2
||Fn0||.

By Lemma A7, we have

||Fm|| 6
∑

ξ∈Fm

1

‖ξ‖φm+n0 ,Pm

+ M

where the constant M is dependent only on f and m. So

||Fm|| 6 1

2
||F0||+ M.

Similar arguments, for any j = 0, 1, · · · ,m − 1 and k = 1, 2, · · ·, we get
that

||Fkm+j|| ≤ 1

2k
(||Fj|| − 2M) + 2M.

So Fn has a uniform upper bound for all n ≥ n0. Therefore there is
a positive lower bound for all ‖γ‖φn for all n ≥ 0 and all simple closed
curves γ ⊂ S2 \ Pf .

Proof of Theorem A1. For the necessary part, see Section 4 of [DH]. The
sufficient part follows now from Lemma A10, Lemma A4, and Lemma
A5.
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