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Abstract

We construct a subset consisting of infinitely renormalizable
points in the Mandelbrot set. We show that Mandelbrot set is
locally connected at this subset and for every point in this sub-
set, corresponding infinitely renormalizable quadratic Julia set is
locally connected. Since the set of Misiurewicz points is in the
closure of the subset we construct, therefore, the subset is dense
in the boundary of the Mandelbrot set.
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1 Introduction, review, and statements of

new results

1.1 Quadratic polynomials

Let C and C be the complex plane and the extended complex plane (the
Riemann sphere). Suppose f is a holomorphic map from a domain Ω ⊂ C
into itself. A point z in Ω is called a periodic point of period k ≥ 1 if
f ◦k(z) = z but f ◦i(z) 6= z for all 1 ≤ i < k. The number λ = (f ◦k)′(z) is
called the multiplier of f at z. A periodic point of period 1 is also called
a fixed point. A periodic point z of f is said to be super-attracting,
attracting, neutral, or repelling if |λ| = 0, 0 < |λ| < 1, |λ| = 1, or
|λ| > 1. The proof of the following theorem can be found in Milnor’s
book [22, pp. 86-88].

Theorem 1.1 (Theorem of Böttcher). Suppose p is a super-attracting
periodic point of period k of a holomorphic map f from a domain Ω into
itself. There is a neighborhood W of p, a holomorphic diffeomorphism
h : W → h(W ) with h(p) = 0, and a unique integer n > 1 such that

h ◦ f ◦k ◦ h−1(w) = wn

for w ∈ h(W ). Furthermore, h is unique up to multiplication by an
(n− 1)-st root of unity.

Consider a quadratic polynomial f(z) = az2 + bz + d. Conjugating f
by an appropriate linear map h(z) = ez+s, we get h◦f ◦h−1(z) = z2 +c.
So from dynamical systems point of view, quadratic polynomials form a
one-parameter family. We call qc(z) = z2+c the Douady-Hubbard family
of quadratic polynomials. When we study this family, we always deal with
two kinds of sets, one is the class of sets in the phase space (the z-plane)
and the other is the class of sets in the parameter space (the c-plane). In
this paper, we use regular letters to denote sets in the phase space and
curly letters to denote sets in the parameter space.

Denote Dr = {z ∈ C | |z| < r} the disk of radius r centered 0. Let
qc(z) = z2+c be a quadratic polynomial. For r large enough, U = q−1

c (Dr)
is a simply connected domain and its closure is relatively compact in Dr.
Then qc : U → V = Dr is a holomorphic, proper, degree two branched
covering map. This is a model of quadratic-like maps defined by Douady
and Hubbard [2] as follows: A quadratic-like map is a triple (f, U, V )
such that U and V are simply connected domains isomorphic to a disc
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with U ⊂ V and such that f : U → V is a holomorphic, proper, degree
two branched covering mapping. For a quadratic-like map (f, U, V ),

Kf = ∩∞n=0f
−n(U)

is called the filled-in Julia set. The Julia set Jf is the boundary of Kf .
Both Kf and Jf are compact. A quadratic-like map (f, U, V ) has only
one critical point which we always denote as 0. Refer to [22, pp. 91-92]
for a proof of the following theorem.

Theorem 1.2. The set Kf (as well as Jf) is connected if and only if 0
is in Kf . Moreover, if 0 is not in Kf , Kf = Jf is a Cantor set.

Since qc : U → V = Dr is a quadratic-like map, the filled-in Julia set
of qc is the set of all points not going to infinity under forward iterates
of qc. We use Kc and Jc to mean its filled-in Julia set and Julia set. For
c = 0 and every r > 1, (q0, Dr, Dr2) is a quadratic-like map whose filled-
in Julia set is K0 = D1. For any c, ∞ is a super-attracting fixed point of
qc, applying Theorem 1.1, there is a unique holomorphic diffeomorphism
hc (called the Böttcher coordinate) defined on a neighborhood B0 about
∞ with hc(∞) = ∞, h′c(∞) = 1 such that

hc ◦ qc ◦ h−1
c (z) = z2, z ∈ B0.

Assume hc(B0) = C \ Dr (for a fixed large number r > 1). Let Bn =
q−n
c (B0). If 0 6∈ Bn, then

qc : Bn ∩ C→ Bn−1 ∩ C, n ≥ 1,

is unramified covering map of degree two. So we can inductively extend

hc : Bn → C \D
r

1
2n

such that
hc ◦ qc ◦ h−1

c (z) = z2 z ∈ Bn.

Let
Bc(∞) = {z ∈ C | q◦nc (z) →∞ as n →∞}

be the basin of ∞. Then Kc = C \Bc(∞). Let

Gc(z) = lim
n→∞

log+ |q◦nc (z)|
2n

,
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where log+ x = sup{0, log x}, be the Green function of Kc. It is a proper
harmonic function whose zero set is Kc and whose critical points are
bounded by Gc(0). So the Böttcher coordinate can be extended to

hc : Uc = {z ∈ C | Gc(z) > Gc(0)} → {z ∈ C | |z| > exp Gc(0)}.

such that
hc ◦ qc ◦ h−1

c (z) = z2.

Moreover, Gc = log |hc|. The set G−1
c (log r), r > 1, is called an equipo-

tential curve.
If Kc is connected (equivalent to say 0 6∈ Bc(∞)), then Uc = Bc(∞) \

{∞}; if Kc is a Cantor set (equivalent to say 0 ∈ Bc(∞)), then Uc

is a punctured disk bounded by an ∞ shape curve passing 0. By the
definition, the Mandelbrot set M is defined as the set of parameters c
such that Kc is connected.

Suppose c ∈ M. Let Sr = {z ∈ C | |z| = r} be a circle of radius
r > 1. Then

sr = h−1
c (Sr) = G−1

c (log r)

is an equipotential curve. Note that

qc(sr) = sr2 .

For every r > 1, let Ur = h−1
c (Dr). Then Ur is a domain bounded by the

equipotential curve sr. Furthermore, (qc, Ur, Ur2) is a quadratic-like map
whose filled-in Julia set is Kc. In the rest of this paper, when we talk
about a quadratic polynomial q(z) = z2 + c, it also mean a quadratic-like
map (q, Ur, Ur2) for any r > 1.

Take Eθ = {z ∈ C | |z| > 1, arg(z) = 2πθ} for 0 ≤ θ < 1. Let

eθ = h−1
c (Eθ).

Then eθ is called an external ray of angle θ and

qc(eθ) = e2θ (mod 1).

An external ray is an integral curve of the gradient vector field ∇G on
Bc(∞). An external ray eθ is said to land at Jc if eθ has only one limiting
point at Jc. It is periodic with period m if q◦ic (eθ)∩ eθ = ∅ for 1 ≤ i < m
and if q◦mc (eθ) = eθ. Refer to [9, 23] for the following theorem (the reader
can also find a proof in [10, pp. 199].
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Theorem 1.3 (Douady and Yoccoz). Suppose qc(z) = z2 + c is
a quadratic polynomial with a connected filled-in Julia set Kc. Every
repelling periodic point of qc is a landing point of finitely many periodic
external rays with the same period.

Two quadratic-like maps (f, U, V ) and (g, U ′, V ′) are said to be topo-
logically conjugate if there is a homeomorphism h from a neighborhood
Kf ⊂ X ⊂ U to a neighborhood Kg ⊂ Y ⊂ U ′ such that

h ◦ f(z) = g ◦ h(z), z ∈ X.

If h is quasiconformal (see [1]) (resp. holomorphic), then they are quasi-
conformally (resp. holomorphically) conjugate. If h can be chosen such
that hz = 0 a.e. on Kf , then they are hybrid equivalent. The reader can
find the proof of the following theorem in [2].

Theorem 1.4 (Douady and Hubbard). Suppose (f, U, V ) is a quadratic-
like map whose Julia set Jf is connected. Then there is a unique quadratic
polynomial qc(z) = z2 + c which is hybrid equivalent to f .

The following basic facts about the Julia set of a quadratic-like map
(f, U, V ) will be used in the paper but the reader can check them by
himself by referring to [22]. The Julia set Jf is completely invariant,
i.e., f(Jf ) = Jf and f−1(Jf ) = Jf . The Julia set Jf is perfect, i.e.,
J ′f = Jf , where J ′f means the set of limit points of Jf . The set of all

repelling periodic points Ef is dense in Jf , i.e., Ef = Jf . The limit set of
{f−n(z)}∞n=0 is Jf for every z in V . The Julia set Jf has no interior point.
If f has no attracting, super-attracting, and neutral periodic points in
V , then Kf = Jf .

1.2 Local connectivity for quadratic Julia sets.

Consider a quadratic polynomial qc(z) = z2 + c whose Julia set Jc is
connected. The external ray e0 is the only one fixed by qc. It lands either
at a repelling or parabolic fixed point β of qc. Suppose β is repelling.
From Theorem 1.3, e0 is the only external ray landing at β. So Jc \ {β}
is still connected. We call β the non-separating fixed point. Let α 6= β
be the other fixed point of qc. If α is attracting or super-attracting, then
Jc = Kc \ B(α) where B(α) = {z ∈ C | q◦nc (z) → α as n → ∞} is the
basin of α. In this case, qc is hyperbolic and Jc is a Jordan curve. If α is
repelling. Then there are at least two periodic external rays landing at
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α. All of them are in one cycle of period k ≥ 2. We use Λ to denote the
union of this cycle of external rays. Then Λ cuts C into finitely many
simply connected domains

Ω0, Ω1, . . . , Ωk−1.

Each domain contains points in Jc. This implies that Jc \ {α} is discon-
nected. We call α the separating fixed point.

The point 0 is the only finite critical point of qc. Let ci = q◦ic (0), i ≥ 1,
be the ith critical value. We use CO to denote the critical orbit {ci}∞i=0.
The critical point 0 is said to be recurrent if for any neighborhood W
of 0, there is a critical value ci 6= 0 in W . We will only consider those
quadratic polynomial whose critical point is recurrent and which has no
neutral periodic points in this paper. These are assumed for a quadratic-
like map too. Under these assumptions, qc has only repelling periodic
points and Jc = Kc.

Let Ur ⊂ C be the open domain bounded by an equipotential curve
sr. For a fixed r > 1, (q, U√r, Ur) is a quadratic-like map. The set Λ cuts
Ur into finitely many Jordan domains. Let C0 be the closure of the one
containing 0, and let B0,i be the closure of the domain containing ci for
1 ≤ i < k. We call the collection

η0 = {C0, B0,1, . . . , B0,k−1}

the original partition about Jc.
Since Λ is forward invariant under qc, the image qc(C0 ∩ Jc) (resp.

q(B0,i ∩ Jc) for every 1 ≤ i < k) is the union of some sets from

η0 ∩ Jc = {C0 ∩ Jc, B0,1 ∩ Jc, . . . , B0,k−1 ∩ Jc}.

Each qc|B0,i is degree one, proper, and holomorphic but qc|C0 is degree
two, proper, and holomorphic.

For each n > 0, let αn = q−n
c (α) and Λn = q−n

c (Λ) (denote α0 = {α}
and Λ0 = Λ). The set Λn is the union of external rays landing at points
in αn. It cuts the closure of the domain U

r
1

2n
into a finite number of

closed Jordan domains,

ηn = {Cn, Bn,1, . . . , Bn,kn}.

Here we use Cn to denote the one containing 0 and Bn,1, . . ., Bn,qn to
denote others. Since qc(Λn) = Λn−1, qc(Cn) (resp. qc(Bn,i)) is in ηn−1.
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Each qc|Bn,i is degree one, holomorphic, proper but qc|Cn is degree two,
holomorphic, and proper. We call ηn the nth-partition about Jc and
within it, Cn is called the critical piece.

Thus we get a sequence

ξ = {ηn}∞n=0

of nested partitions, which we call the Yoccoz partition about Jc, and a
sequence of critical pieces,

0 ∈ · · · ⊆ Cn ⊆ Cn−1 ⊆ · · · ⊆ C2 ⊆ C1 ⊆ C0.

From Theorem 1.4, the sequence ξ can be also constructed similarly
for any quadratic-like map whose Julia set is connected.

Definition 1.1. Let (f, U, V ) be a quadratic-like map whose Julia set
Jf is connected. We say it is (once) renormalizable if there is an integer
n′ ≥ 2 and a domain 0 ∈ U ′ ⊂ U such that

f1 = f ◦n
′
: U ′ → V ′ = f1(U

′) ⊂ V

is a quadratic-like map with connected Julia set Jf1 = J(n′, U ′, V ′). In
this situation, we call (f1, U

′, V ′) a renormalization of (f, U, V ). Other-
wise, we call f non-renormalizable.

If f is renormalizable and f1 is also renormalizable, then we call f
twice renormalizable. So on one can define a finitely renormalizable and
infinitely renormalizable f . The relation between ξ and the renormaliz-
ability of a quadratic polynomial is proved by Yoccoz (refer to [9, 23, 10]).

Theorem 1.5 (Yoccoz). The polynomial qc(z) = z2+c is non-renormalizable
if and only if ∩∞n=0Cn contains one point. Moreover, if qc is non-renormalizable,
then the Julia set Jc is locally connected.

Furthermore, we have that

Theorem 1.6 (Yoccoz). If qc is finitely renormalizable, then the Julia
set Jc is locally connected.

We have studied the extension of Yoccoz partitions (the first three-
dimensional partition in [11]) (see §1.4) for an infinitely renormalizable
quadratic polynomial firstly and used it in the study of the local connec-
tivity of the Julia set of an infinitely renormalizable quadratic polynomial.
More precisely, we first proved the following theorem.



Complex Dynamics and Related Topics 243

Theorem 1.7 (Modulus Inequality, Jiang). Suppose f : U → V
is a renormalizable quadratic-like map and 0 is not periodic. For any
n′-renormalization

f1 = f ◦n
′
: U ′ → V ′, n′ ≥ 2,

we have

mod(U \ U ′) ≥ 1

2
mod(V \ U).

In the theorem, mod(·) means the modulus of an annulus. Using this
theorem, we showed the following corollary. The reader may refer to [11]
for the concept, complex bounds.

Corollary 1.1 (Jiang). Suppose qc is an infinitely renormalizable quadratic
polynomial having complex bounds. Then the Julia set Jc is locally con-
nected at 0.

Furthermore, we constructed the second three-dimensional partition
for an infinitely renormalizable quadratic polynomial in [11] (see §1.4),
we proved the following theorem. Again, the reader may refer to [11] for
the concept, unbranched.

Theorem 1.8 (Jiang). Suppose qc is a unbranched infinitely renormal-
izable quadratic polynomial having complex bounds. Then the Julia set Jc

is locally connected.

The unbranched condition and the complex bounds condition are im-
portant in the study of local connectivity. A real infinitely renormalizable
quadratic polynomial is unbranched. Many people have worked out some
results about complex bounds for real infinitely renormalizable quadratic
polynomials. The Feigenbaum polynomial is a real infinitely renormaliz-
able quadratic polynomial q∞(z) = z2 + t∞, t∞ real, such that

fi(z) = q◦2
i

∞ (z) : Ui → Vi

is a sequence of simple renormalizations (see [20]). Sullivan [Su] (see
also [MS,Ji1]) proved that q∞ has the complex bounds. In the study of
Sullivan’s result, we concluded in [15] (see also [8, Introduction] for some
historic remark).

Corollary 1.2 (Jiang-Hu). The Julia set of the Feigenbaum polynomial
is locally connected.
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Furthermore, Levins and van Strien [17], and later, Lyubich and Yam-
polsky [19] showed that any real infinitely renormalizable quadratic poly-
nomial has complex bounds. Therefore,

Corollary 1.3 (Levins-van Strien and Lyubich-Yampolsky). The
Julia set of a real infinitely renormalizable quadratic polynomial is locally
connected.

1.3 Some basic facts about the Mandelbrot set from
Douady-Hubbard

Consider the Mandelbrot set M which is the compact set of all param-
eters c in C such that the Julia set Jc of qc is connected. Equivalently,
M consists of all parameters c such that 0 has bounded orbit (see Theo-
rem 1.2). We will often identify c with the corresponding polynomial qc.
A point c ∈M (really means qc) is called hyperbolic if and only if it has
a unique attracting periodic orbit. Let {z0, · · · , zp−1} be the attracting
periodic orbit for a hyperbolic c and let λ(c) = q◦pc (z0). The hyperbolic
maps form an open subset in C. When c changes in one connected com-
ponent H of this open set, the period p and the combinatorial type of
the attracting periodic orbit are fixed. Here p is called the period of H.
Moreover, λH(c) = q◦pc (z0) mapsH to D1 = {z ∈ C | |z| < 1} conformally
and can be extends uniquely to a homeomorphism

λH(c) : H → D1.

Note that H has a unique center cH = λ−1
H (0). The point rH = λ−1

H (1)
is called the root of H. For example, the component H0 bounded by the
cardioid is the hyperbolic component of c such that qc has an attracting
fixed point. Then λH0(c) = 1−√1− 4c. The center is 0, the root is 1/4,
and λ−1

H0
(e2πiθ) = e2πiθ(2− e2πiθ)/4.

Consider a hyperbolic component H of period p ≥ 1 and the corre-
sponding λH(c). For each r ∈ ∂H such that λH(r) = e

2πi m
p′ , (m, p′) = 1,

it is the root of a hyperbolic component H′ of period pp′. (Note that in
the case m = 0 and p′ = 1, H′ = H and in all other cases, H′ 6= H.) Here
H′ is called the satellite of H with an internal angle m/p′ and denoted
as H′ = H ∗H(m/p′).

For each c ∈ C, let

hc : Uc = {z ∈ C | Gc(z) > Gc(0)} → {z ∈ C | |z| > exp (Gc(0))}
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be the Böttcher coordinate from §1.1, where Gc is the Green function for
Kc. Then

hc ◦ qc ◦ h−1
c (z) = z2.

and Gc = log |hc|. For c ∈ C \M, c ∈ Uc and thus we have hc(c).

Theorem 1.9 (Douady-Hubbard). The map

ΦM(c) = hc(c) : C \M→ C \D1

is a conformal map. Thus M is connected.

The equipotential curve of radius r > 1 of M is

Sr = Φ−1
M ({c ∈ C | |c| = r})

and the external ray of angle 0 ≤ θ < 1 of M is

Eθ = Φ−1
M ({c ∈ C | |c| > 1 and arg(c) = 2πθ}).

For example, E0 = (1/4,∞) and E1/2 = (−∞,−2). An external ray Eθ is
said to land at M if it has only one limiting point at M. Both of E0 and
E1/2 land at M (E0 lands at 0 and E1/2 lands at −2). Furthermore,

1) every external ray Eθ of rational angle θ = m/p lands at a point in
M;

2) if θ = m/p with (m, p) = 1 and p = 2p′, then Eθ lands at a point
c ∈ M such that the critical orbit CO of qc is preperiodic (such
a c is called a Misiurewicz point). Conversely, every Misiurewicz
point is a landing point of an external ray Eθ of angle θ = m/p with
(m, p) = 1 and p = 2p′;

3) For θ = m/p with (m, p) = 1 and p = 2p′, let c be the landing
(Misiurewicz) point of Eθ, the external ray eθ in the z-plane for qc

lands at its critical value of c (see [28] for some similarity between
M around a Misiurewicz c and the corresponding Jc around c);

4) let H be a hyperbolic component of period p > 1, there are exactly
two external rays Eθ− and Eθ+ land at the root rH where θ− =
m−/(2p − 1) and θ+ = m+/(2p − 1) for 1 ≤ m− < m+ < 2p − 1.

Consider the component H0 bounded by the cardioid and a satellite
H(m/p) = H∗H0(m/p) of angle m/p, (m, p) = 1. Let Eθ− and Eθ+ be two
external rays landing at the root rH(m/p). Then the closure of Eθ− ∪ E+

θ

cuts C into two connected components. Let Wm/p be the one containing
H(m/p). See [7] for the following theorem.
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Theorem 1.10 (Goldberg-Milnor). For any c ∈ Wm/p, consider qc.
There are exactly p external rays in the z-plane that land at the separating
fixed point αc of qc. These p external rays have angles 2iθ+, i = 0, · · · , p−
1. Moreover, c is in the domain bounded by two external rays of angle θ−

and θ+.

The main conjecture in this direction is that the Mandelbrot set M
is locally connected. From the Carathéodory theorem, if M is locally
connected, then Φ−1

M can be extended to a comtinuous map from C \D1

to C \M, thus every external ray lands at a unique point in M.
By applying the Douady-Hubbard map ΦM, one can transfer Yoccoz

partition ξ = {ηn}∞n=1 to a partition Ξ = {Θn}∞n=0 around all finitely
renormalizable points in the parameter space. Using this para- partition,
Yoccoz further proved the following theorem (refer to [9, 24]).

Theorem 1.11 (Yoocoz). The Mandelbrot set M is locally connected
at every finitely renormalizable point.

For indifferent points c (i.e., qc has a neutral periodic point), Yoccoz
proved that the Mandelbrot set is locally connected at these points. The
key step in his proof is the Yoccoz inequality as follows (refer to [9]). (For
rational indiferent points, one needs to argue more, see [25] or [29] for a
clarification.)

Consider a monic polynomial P (z) of degree d whose Julia set is
connected. Let p be a repelling fixed point of P and let λ = P ′(p).
Suppose there are totally m′ external rays of P landing at p. Label these
external rays in cyclical order. Suppose the ith external ray is mapped to
the [(i + k′) (mod m′)]th external ray. Let r = gcd(m′, k′). Then there
are r cycles of external rays landing at p. Let m′ = rm and k′ = rk,
(m, k) = 1. The Yoccoz inequality says that there is a branch τ of log λ
satisfying

<τ

|τ − 2πi k
m
|2 ≥

rm

2 log d
.

In other words, τ belongs to the closed disc of radius (log d)/(rm) tangent
to the imaginary axis at 2πik/m. The Yoccoz inequality reveals a rela-
tion between the analytic derivative τ and the combinatorial derivative
2πik/m of P at a fixed point.

Concluding from Yoccoz’ results, the Mandelbrot set M is locally
connected at those points c such that qc are not infinitely renormalizable.
Therefore, the study of the local connectivity of the Mandelbrot set M
is concentrated at all infinitely renormalizable points.
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By applying the Yoccoz inequality, Douady-Hubbard constructed a
generic subset of infinitely renormalizable quadratic polynomials whose
Julia set is non-locally connected but M is locally connected at every
point in this subset. They used a method called tuning (or called unrenor-
malization) in this construction. The tuning can be described roughly as
follows.

Consider a hyperbolic component H of period p. There are two exter-
nal rays Eθ−(H) and Eθ+(H) land at its root rH. The set Eθ−(H) ∪ Eθ+(H) ∪
{rH} cuts C into two domains. Denote the one containing H as W(H).
Then W(H) contains a small copy M(H) of the Mandelbrot set M such
that H is the image of H0. For every c ∈ M(H), qc is renormalizable
and, more precisely, there is a simple renormalization

q◦m(H)
c : U [c] → V [c].

Let H′ be a satellite of H of period p′. We can similarly construct W(H′)
and M(H′) for H′ but we will denote them as W(H ∗ H′) and M(H ∗
H′). (Without having confusion, we also denote them as W(p ∗ p′) and
M(p ∗ p′)). For every c ∈ W(p ∗ p′),

q◦m(p)
c : U [c] → V [c]

is renormalizable and has a simple renormalization

q◦m(p)p′
c : U ′[c] ⊂ U [c] → V ′[c] ⊂ V [c].

This processing is called tuning. Starting from the componentH0 bounded
by the cardioid and a sequence of positive integers, p0, p1, · · ·, Douady and
Hubbard constructed a sequence of nested tuning sets

W̃p0∗p1∗···∗pn = W(p0 ∗ p1 ∗ · · · ∗ pn) ∩M.

Using the Yoccoz inequality, they showed that if pn tends to ∞ fast
enough (i.e., pn >> pn−1), the diameter d(W̃p0∗p1∗···∗pn) tends to zero as
n goes to infinity, therefore, M is locally connected at the intersection
point

c ∈ ∩∞n=0W̃p0∗p1∗···∗pn .

Furthermore, qc is infinitely renormalizable whose Julia set is not locally
connected (see [23]) due to the fast growth of pn.

In this paper, we will study those infinitely renormalizable points
whose Julia sets are locally connected.
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1.4 Constructions of three-dimensional partitions.

Take an infinitely renormalizable quadratic polynomial qc(z) = z2 + c.
Let U and V be domains bounded by equipotential curves such that
f0 = qc : U → V is a quadratic-like map. Let α0 = α, β0 = β, η0

n = ηn,
ξ0 = ξ, C0

n = Cn, Λ0
n = Λn, and Λ0

∞ = ∪∞n=0Λ
0
n be the same as §1.2. Let

n1 ≥ 0 and k1 ≥ 2 be two integers such that

f1 = f ◦k1
0 : C0

k1+n1
→ C0

n1
⊂ N(J1, 1) where J1 = ∩∞i=0C

0
i .

Suppose β1 and α1 are the non-separating and separating fixed points of
f1, i.e., J1 \ {β1} is still connected and J1 \ {α1} is not. The points β1

and α1 are also repelling periodic points of qc. There are at least two,
but a finite number, external rays of qc landing at α1. Let Λ1

0 be the
union of external rays landing at α1. Then Λ1

0 cuts V 1
0 = C0

n1
into a finite

number of closed domains. Let η1
0 be the collection of these domains. Let

Λ1
n = f−n

1 (Λ1
0) for any n > 0. Then Λ1

n cuts V 1
n = f−n

1 (V 1
0 ) into a finite

number of closed domains. Let η1
n be the collection of these domains.

The sequence ξ1 = {η1
n}∞n=0 is a sequence of nested partitions about J1.

We call it the first partition. (We also call ξ0 the 0th partition.) Let
Λ1
∞ = ∪∞n=0Λ

1
n.

The domain C1
n ∈ η1

n containing 0 is called the critical piece. It is
clear the restriction f1 to C1

n is degree two branched covering map but to
all other domains in η1

n are degree one. Let

J2 = ∩∞n=0C
1
n.

There are two integers n2 ≥ 0 and k2 ≥ 2 such that

f2 = f ◦k2
1 : C1

n2+k2
→ C1

n2

is a degree two branched cover map and such that C1
n2
⊂ N(J2, 1/2).

Inductively, for every i ≥ 2, suppose we have already constructed

fi = f ◦ki
i−1 : Ci−1

ni+ki
→ Ci−1

ni
.

Let βi and αi be the non-separating and separating fixed points of fi; i.e.,
Ji \ {βi} is still connected and Ji \ {αi} is not. The points βi and αi are
also repelling periodic points of qc. There are at least two, but a finite
number, external rays of qc landing at αi. Let Λi

0 be the union of external
rays landing at αi. Then Λi

0 cuts V i
0 = Ci−1

ni
into finitely many closed
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domains. Let ηi
0 be the collection of these domains. Let Λi

n = f−n
i (Λi

0)
for any n > 0. Then Λi

n cuts V i
n = f−n

i (V i
0 ) into finitely many closed

domains. Let ηi
n be the collection of these domains. The domain Ci

n

in ηi
n containing 0 is called the critical piece in ηi

n. It is clear that fi

restricted to all domains but Ci
n are bijective and fi|Ci

n is a degree two
branched covering map. Let

Ji+1 = ∩∞n=0C
i
n.

There are two integers ni+1 ≥ 0, ki+1 ≥ 2 such that

fi+1 = f
◦ki+1

i : Ci
ni+1+ki+1

→ C i
ni+1

is a degree two branched cover map and such that Ci
ni+1

⊂ N(Ji+1, 1/(i+

1)). Let ξi = {ηi
n}∞n=0. It is the sequence of nested partitions about Ji.

We call it the ith partition.

Remark 1.1. For any ki+1-renormalization fi+1 = f
◦ki+1

i : U ′ → V ′ of
fi : Ui → Vi, we have an integer n > 0 such that Ci

n ⊂ V ′∩N(Ji+1, 1/(i+

1)) and fi+1 = f
◦ki+1

i : Ci
n+ki+1

→ Ci
n is a degree two branched covering

map. We will still use ξi to mean ξi ∩ Ci
n+ki+1

. Therefore, (Ui+1, Vi+1)

can be an arbitrary domains such that fi+1 = f
◦ki+1

i : Ui+1 → Vi+1 is a
ki+1-renormalization of fi : Ui → Vi.

Let mi =
∏i

j=1 ki, 1 ≤ i < ∞. We have thus constructed a most
natural infinite sequence of simple renormalizations,

{fi = q◦mi
c : Ui → Vi}∞i=1,

and the nested-nested sequence {ξi}∞i=0 of partitions about {Ji}∞i=0 (where
J0 = Jc). Then Ξ = {ξi}∞i=0 is our first three-dimensional partition about
Jc.

Now we construct our second three-dimensional partition Υ about
Jc. Denote by κ1 the first partition which will be constructed as follows:
Consider ξ0 = {η0

n}∞n=0 in Ξ. Take C0
k(0) ∈ η0

k(0) ∈ ξ0 where k(0) = n1+k1.

Put all domains in η0
k(0)+1 which are the preimages of C0

k(0) under qc into

κ1 and let η0c
k(0)+1 be the rest of the domains. Consider η0

k(0)+2 ∩ η0c
k(0)+1

consisting of all domains in η0
k(0)+2 which are subdomains of the domains

in η0c
k(0)+1. Put all domains in η0

k(0)+2 ∩ η0c
k(0)+1 which are the preimages of

C0
k(0) under q◦2c into κ1 and let η0c

k(0)+2 be the rest of the domains. Suppose

we already have η0c
k(0)+s for s ≥ 2. Consider η0

k(0)+s+1 ∩ η0c
k0+s consisting of
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all domains in η0
k(0)+s+1 which are subdomains of the domains in η0c

k(0)+s.

Put all domains in η0
k(0)+s+1 ∩ η0c

k(0)+s which are the preimages of C0
k(0)

under q
◦(s+1)
c into κ1 and let η0c

k(0)+s+1 be the rest of the domains. Thus
we can construct the partition κ1 inductively. This partition covers points
in Jc minus all points not entering the interior of C0

k(0) under all forward
iterations of qc.

Next consider the ξ1 = {η1
n}∞n=0 in Ξ. Take C1

k(1) ∈ η1
k(1) ∈ ξ1 where

k(1) = n2 + k2. We can use similar arguments to those in the previous
paragraph by considering f1 : C0

k(0) → C0
k(0)−k1

(to replacing qc : U → V )

to get a partition κ1,1 in C0
k(0). Then we use all iterations of qc to pull

back this partition following κ1 to get a partition κ2. It is a sub-partition
of κ1 and covers points in Jc minus all points not entering the interior of
C1

k(1) under iterations of qc.

Suppose we have already constructed the (j − 1)th partition κj−1 for
j ≥ 2. Consider the partition ξj = {ηj

n}∞n=0 in Ξ. Take Cj
k(j) ∈ ηj

k(j) ∈ ξj

where k(j) = nj+1 + kj+1. Similarly, by considering fj : Cj−1
k(j−1) →

Cj−1
k(j−1)−kj

, we get a partition κj,1 in Cj−1
k(j−1). Then we use all backward

iterations of fj−1 to pull back this partition following κj−1 to get a par-
tition κj,2 in Cj−2

k(j−2) and all backward iterations of fj−2 to pull back this

partition following κj−1 to get a partition κj,3 in Cj−3
k(j−3), and so on to

obtain a partition κj = κj,j in V . It is a sub-partition of κj−1 and covers
points in the Julia set minus all points not entering the interior of Cj

k(j)

under forward iterations of qc. By the induction, we have a sequence of
nested partitions

Υ = {κj}∞j=1

which covers points in Jc \ Γ. Then Υ = {κj}∞j=1 is our second three-
dimensional partition about Jc.

1.5 Statements of new results.

Yoccoz partitions can be transferred completely to the parameter space
naturally by using the Douady-Hubbard map ΦM. But it is more diffi-
cult to transfer three-dimensional partitions to the parameter space com-
pletely. The difficulty is around those Feigenbaum-like points. In this
paper, we will partially transfer three-dimensional partitions to the pa-
rameter space. We will construct a subset of the Mandelbrot set such
that (1) this subset consists of infinitely renormalizable points, (2) this
subset is dense on the boundary of the Mandelbrot set, (3) we can trans-



Complex Dynamics and Related Topics 251

fer three-dimensional partitions for infinitely renormalizable quadratic
polynomials in this subset to a partition around this subset set in the
parameter space, and (4) the partition is good enough to study the local
connectivity of this subset in the Mandelbrot set. More precisely, we
prove in this paper that

Theorem 1.12 (Main Theorem). Suppose c is a Misiurewicz point.
Then there is a subset A(c) ⊂M such that

(i) c is a limit point of A(c),

(ii) for every c′ ∈ A(c), qc′(z) = z2 + c′ is an unbranched infinitely
renormalizable quadratic polynomial having complex bounds and the
Julia set Jc′ is locally connected, and

(iii) the Mandelbrot set M is locally connected at every point c′ ∈ A(c).

Since the set B of Misiurewicz points is dense on the boundary of M,
we have

Corollary 1.4. The set A = ∪c∈BA(c) is dense on the boundary ∂M.

In the proof of Theorem 1.12, we will use the following classical the-
orem in complex analysis (refer to [16]).

Theorem 1.13 (Rouché’s Theorem). Suppose D is a domain in the
complex plane C. Let γ ⊂ D be a closed path homologous to 0 and assume
that γ has an interior. Let f and g be analytic on D, and

|f(z)− g(z)| < |f(z)|, z ∈ γ.

Then f and g have the same number of zeros in the interior of γ.

The rest of the paper is arranged as follows. To have a better expla-
nation to our idea, we first study a special Misiurewicz point −2 in the
Mandelbrot set and prove in §2 the following theorem.

Theorem 1.14 (Special Case). There is a subset A(−2) ⊂ M con-
sisting of infinitely renormalizable points such that −2 is a limit point of
A(−2) and the Mandelbrot set M is locally connected at A(−2), More-
over, for every c ∈ A(−2), the Julia set Jc of qc is locally connected.

Then by combining the proof of Theorem 1.14, we give a complete
proof of Theorem 1.12.
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2 Basic idea in our construction

Let q−2(z) = z2 − 2. Its Julia set J2 is [−2, 2]. It has the non-separating
fixed point β(−2) = 2 and the separating fixed point α(−2), i.e., J−2 \
{β(−2)} is still connected and J−2 \ {α(2)} is disconnected. To use
notations clearly, we use the letter G to denote a set in the phase space
and the Letter Λ to denote the same set but in the Böttcher coordinate.

Let G0,l(−2) be the closure of the union of two external rays landing
at α(−2). Let h−2 be the Bötteche coordinate for q−2, i.e.,

h−2 ◦ q−2 ◦ h−1
−2(z) = z2.

Then h−2 maps G0,l(−2) to two straight rays in C\D1 (which have angles
1/3 and 2/3). We use Λ0,l to denote the closure of the union of these two
straight rays.

Let

LH = {z = x + yi ∈ C | x < 0} and RH = {z = x + yi ∈ C | x > 0}

be the left and right half planes. Consider q0(z) = z2. The restriction
q0|(C \ (−∞, 0]) has two inverse branches

gl,0 : C \ (−∞, 0] → LH and gr,0 : C \ (−∞, 0] → RH.

Let Λn,r = gn+1
r,0 (Λ0,l) and Λn+1,l = gn+1

l,0 (Λn,r) for n = 0, 1, · · ·. It is easy
to see that Λn,r tends to the ray of angle 0 and Λn,l tends to the ray of
angle 1/2. Let

Λ = [∪∞n=0(Λn,r ∪ Λn,l)] ∪ ((−∞,−1] ∪ [1,∞)).

Let G(−2) = h−1
−2(Λ). Then it is the union of external rays for q−2

landing at the set

A(−2) = [∪∞n=0(g
n
r,−2(α(−2)) ∪ gn

l,−2(α(−2)))] ∪ {−2, 2}.

We also denote Gn,r(−2) = h−1
−2(Λn,r) and Gn,l(−2) = h−1

−2(Λn,l).
For c ∈ W1/2, let G0,l(c) be the closure of union of two external rays

landing at its separating fixed point α(c). Let α(c) be another preimage
of α(c). Let G0,r(c) be the closure of union of two external rays landing
at α(c). Then G0,l(c)∪C0,r(c) cuts C into three domains. One, which we
call Er(c), contains the non-separating fixed point β(c) of qc. The other,
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Figure 1: Basic idea in our construction in the dynamical plane.

which we call El(c), contains the other preimage β(c) of β(c) under qc.
The restriction qc|(El,c(c) ∪ Er,c)(c) has two inverse branches

gl,c : E → El(c) and gr,c : E → Er(c).

Let hc be the Böttcher coordinate for qc(z) = z2 + c, i.e.,

hc ◦ qc ◦ h−1
c = z2.

Let G(c) = h−1
c (Λ). Then it is the union of external rays for qc landing

at the set

A(c) = [∪∞n=0(g
n
r,c(α(c)) ∪ gn

l,c(α(c)))] ∪ {β(c), β(c)}.
We also denote Gn,r(c) = h−1

c (Λn,r) and Gn,l(c) = h−1
c (Λn,l).

Let
φc = h−1

c ◦ h−2.

When restricted to G(−2), φc conjugates q−2|G(−2) to qc|G(c).
Let U(−2) be a fixed domain bounded by an equipotential curve s(−2)

for q−2. Then q−2 : U(−2) → V (−2) is a quadratic-like map where
V (−2) = q−2(U(−2)). The set G0,l(−2)∪G0,r(−2) cuts U(−2) into three
disjoint domains. Denote D0(−2) the closure of the one containing 0 (see
Figure 1).

Let Dn(−2) = g◦nr,−2(D0(−2)) and let Bn(−2) = g◦nl,−2(Dn−1(−2)) for
n ≥ 1 (see Figure 1). Since 2 is an expanding fixed point of q−2 and
q(−2) = 2, the diameter diam(Bn) of Bn tends to zero exponentially as
n goes to infinity. Let 0 6∈ U0 be a small neighborhood about −2 in the
parameter space such that diam(U0) ≤ 1 and such that the corresponding
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graph G(c) for qc exists for c in U0. For c in U0, let φc : G(−2) → G(c) be
the conjugacy from q−2 to qc. Let sc = φc(s) be the corresponding equipo-
tential curve for qc. Let U(c) be the closure of the domain bounded by sc.
Similarly, G0,l(c)∪G0,r(c) cuts U(c) into three disjoint domains. Denote
D0(c) be the closure of the one containing 0. Let Dn(c) = g◦nr,c(D0(c))
and let Bn(c) = gl,c(Dn−1(c)) for n ≥ 1. Note that β(c) and α(c) are
the non-separating and separating fixed points of qc and β(c) is the other
inverse image of β(c) under qc. Then Bn(c) and Dn(c) tend to β(c) and
β(c), respectively, as n goes to infinity. Since β(c) is an expanding fixed
point of qc and since there is a constant µ > 1 such that |q′c(β(c))| ≥ µ
for all c in U0, the diameter diam(Bn(c)) tends to 0 uniformly on U0 and
the set Bn(c) approaches to β(c) uniformly on U0 as n goes to infinity.
Let

Wn = {c | c ∈ Bn(c)}.
Then Wn, for n = 1, 2, · · ·, give a partition in the parameter space.

Let f(c) = qc(0)− β(c) and g(c) = qc(0)− x for x ∈ Bn(c). Suppose
γ = ∂U0 is a closed path homologous to 0 in U0 such that

m = min
c∈∂U0

= min
c∈∂U0

|qc(0)− β(c)| > 0.

Because Bn(c) approaches β(c) uniformly on U0 as n goes to infinity,
there is an integer N0 > 0 such that for n ≥ N0,

|f(c)− g(c)| = |β(c)− x| < m ≤ |f(c)|, c ∈ ∂U0.

Since the equation f(c) = qc(0) − β(c) = 0 has a unique solution −2 in
U0, Theorem 1.13 (Rouché’s Theorem) implies that g(c) = qc(0)− x = 0
has a unique solution, which is in U0, for any x in Bn(c) for n ≥ N0.
Therefore Wn ⊆ U0 for n ≥ N0. So diam(Wn) ≤ 1 for n ≥ N0 (see
Figure 2).

Lemma 2.1. The intersection M̃n = Wn∩M for n ≥ N0 is connected.

Proof. The boundary Bn(c) consists of four curves Gn,l(c), Gn−1,l(c), and
some pieces of the equipotential curve sn(c) = q−n

c (s(c)). Note that
qn+1
c (Gn,l(c)) = G0,l(c) and qn

c (Gn−1,r(c)) = G0,l(c). The domain Wn is
bounded by the closure of two external rays

Gn = {c | c ∈ Gn,l(c)}, Gn−1 = {c | c ∈ Gn−1(c)}
and some pieces of the equipotential curve

Sn = {c | c ∈ sn(c)}.
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Figure 2: Basic idea in our construction in the parameter space.

Each of intersections Gn ∩ M and Gn−1 ∩ M consists only one point,
denoted as an and an−1. The closure of Gn (or Gn−1) in the extended
complex plane is a topological curve isomorphic to a circle and it inter-
sects M only at an (or an−1). Let us still denote these extended curves
as Gn and Gn−1. Then Gn and Gn−1 cut C into three domains. The one
on an side is called Xn and the one on an−1 side is called Xn−1.

If M̃n is disconnected. Let U and V be two non-empty domains such
that U ∩ V = ∅ and such that

(U ∩ M̃n) ∪ (V ∩ M̃n) = M̃n.

Assume an ∈ U and an−1 ∈ V (other cases can be proved similarly). Let
Ũ = U ∪ Xn and Ṽ = V ∪ Xn−1. Then Ũ and Ṽ are two non-empty
domains such that Ũ ∩ Ṽ = ∅ and such that

(Ũ ∩M) ∪ (Ṽ ∩M) = M.

This would say that M is disconnected. This contradiction implies that
M̃n must be connected.

Proof of Theorem 1.14 (Special Case). For each Wn where n ≥ N0, since
c ∈ Bn(c), Cn(c) = q−1

c (Bn(c)) is the closure of a connected and simply
connected domain which contains 0 and which is a sub-domain of D0(c).
Let

fn,c = q◦(n+1)
c : C̊n(c) → D̊0(c).
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Figure 3: Construction of a quadratic-like map by renormalization.

Then it is a quadratic-like map (see Figure 3). Furthermore, since diam(Bn(c))
tends to zero as n goes to infinity uniformly on U0, for N0 large enough we
can have that the modulus mod(An(c)) ≥ 1 where An(c) = D̊0(c)\Cn(c).
Moreover, the family

{fn,c : C̊n(c) → D̊0(c) ; c ∈ Wn}

is a full family, so Wn contains a copy Mn of the Mandelbrot set M
(refer to [23, pp. 102-106], ). For c ∈ Mn, the Julia set Jfn,c of fn,c :

C̊n(c) → D̊0(c) is connected. Therefore, for c ∈ A1 = ∪∞n≥N0
Mn, qc is

once renormalizable.
For a fixed integer i0 ≥ N0, consider Wi0 and Mi0 ; there is a param-

eter ci0 ∈ Mi0 such that fi0 = fi0,ci0
: C̊i0 = C̊i0(ci0) → D̊i0 = D̊0(ci0) is

hybrid equivalent to q−2(z) = z2− 2. The quadratic-like map fi0 : C̊i0 →
D̊i0 has the non-separate fixed point and the separate fixed point, which
we simple denote as β and α. Let β be another pre-image of β under fi0 .

Let G be the closure of the union of two external rays for qci0
landing

at α. Then fi0(G) = G and G ∩ Jfi0
= {α}. Let G̃ = f−1

i0
(G). Then G̃

cuts Ci0 into three domains. Denote Di00 be the one containing 0. Let
β ∈ Ei00 and β ∈ Ei01 be the components of the closure of Ci0 \Di00. Let
gi00 and gi01 be the inverses of fi0|Ei00 and fi0|Ei01. Let

Di0n = g◦ni01(Di00) and Bi0n = gi00(Di0(n−1))

for n ≥ 1. Again by the Böttcher coordinates hci0
and hc, we can similarly

prove that β, β, α, and G, G̃, and ∂Ci0 are preserved for c close to ci0 .
Similar to the argument in the above, we can find a small neighborhood
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Ui0 about ci0 with diam(Ui0) ≤ 1/2 such that the corresponding domains
Bi0(c) and Di0(c) can be constructed for qc for c ∈ Ui0 . Let

Wi0n = {c ∈ C | fi0,c(0) ∈ Bi0n(c)}.

Then {Wi0n}i0≥1,n≥1 give a sub-partition of {Wn}n≥1.
The diameter diam(Bi0n(c)) tends to zero uniformly on Ui0 and the set

Bi0n(c) approaches to β(c) uniformly on Ui0 as n goes to infinity. Suppose
Ui0 is simply connected and the boundary curve γ = ∂Ui0 is a closed
path homologous to 0 in Ui0 . Since the equation fi0,c(0)− βi0(c) = 0 has
a unique solution ci0 (following Thurston’s theorem for critically finite
rational maps (see [5]) and also refer to [4]), m = minc∈∂Ui0

|fi0,c(0) −
βi0(c)| > 0. Let f(c) = fi0,c(0) − βi0(c) and g(c) = fi0,c(0) − x for
x ∈ Bi0n(c). There is an integer Ni0 > 0 such that for n ≥ Ni0 ,

|f(c)− g(c)| = |βi0(c)− x| < m ≤ |f(c)|, c ∈ ∂Ui0 .

Theorem 1.13 (Rouché’s Theorem) now implies that g(c) = fi0,c(0)−x =
0 has a unique solution in Ui0 for any x in Bi0n(c) for n ≥ Ni0 . Therefore
Wi0n ⊆ Ui0 for n ≥ Ni0 . So diam(Wi0n) ≤ 1/2 for n ≥ Ni0 .

Similar to the proof of Lemma 2.1, we have M̃i0n = Wi0 ∩ M is
connected for n ≥ Ni0 . For each c in Wi0n, n ≥ Ni0 , let Ci0n(c) =
f−1

i0,c(Bi0n(c)). Then

fi0n,c = f
◦(n+1)
i0,c : C̊i0n(c) → D̊i00(c)

is a quadratic-like map. Furthermore, since diam(Bi0n(c)) tends to zero
as n goes to infinity uniformly on Ui0 , for Ni0 large enough we can have the
modulus mod(Ai0n(c)) ≥ 1 where Ai0n(c) = D̊i00(c) \ Ci0n(c). Moreover,

{fi0n,c : C̊i0n(c) → D̊i00(c) | c ∈ Wi0n}

is a full family. ThusWi0n contains a copyMi0n of the Mandelbrot setM
(refer to [23, pp. 102-106]). For c ∈ A2 = ∪i0≥N0 ∪i1≥Ni0

Mi0i1 , the Julia

set of fi0n,c : C̊i0n(c) → D̊i00(c) is connected, so qc is twice renormalizable.
We use the induction to complete the construction of our subset

A(−2) around−2. Suppose we have constructedWw where w = i0i1 . . . ik−1

and i0 ≥ N0, i1 ≥ Ni1 , . . ., ik−1 ≥ Ni0i1...ik−2
. Let v = i0 . . . ik−2. There

is a parameter cw ∈ Mw such that fw = fw,cw : C̊w = C̊w(cw) → D̊w =

D̊v0(cw) is hybrid equivalent to q−2(z) = z2 − 2. The quadratic-like map
fw : C̊w → D̊w has the non-separate fixed point βw and the separate fixed
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point αw. Let Gw be the closure of the union of two external rays for
qcw which land at αw. Let G̃w = f−1

w (Gw). Then G̃w cuts Cw into three
domains. Let Dw0 be the one containing 0. Denote βw be another preim-
age of βw under fw. Let βw ∈ Ew0 and βw ∈ Ew1 be the components of
the closure of Cw \Dw0. Let gw0 and gw1 be the inverses of fw|Ew0 and
fw|Ew1. Let

Dwn = g◦nw1(Dw0) and Bwn = gw0(Dw(n−1))

for n ≥ 1. By the Böttcher coordinates hcw and hc, βw, βw, αw, and Gw,
G̃w, and ∂Cw are preserved for c close to cw. We can find a small neigh-
borhood Uw about cw with diam(Uw) ≤ 1/2k such that the corresponding
domains Dwn(c) and Bwn(c) can be constructed for qc, c ∈ Uw. Let

Wwn = {c ∈ C | fw,c(0) ∈ Bwn(c)}, n = 1, 2, · · · .
They give a sub-partition of {Ww}.

The diameter diam(Bwn(c)) tends to zero uniformly on Uw and the
set Bwn(c) approaches to βw(c) uniformly on Uw as n goes to infinity.
Suppose Uw is simply connected and the boundary curve ∂Uw is a closed
path homologous to 0. Since the equation fw,c(0) − βw(c) = 0 has a
unique solution cw (following from Thurston’s theorem for critically finite
rational maps (see [5]) and also refer to [4]),

m = min
c∈γ

|fw,c(0)− βw(c)| > 0.

Let f(c) = fw,c(0)− βw(c) and g(c) = fw,c(0)− x for x ∈ Bwn(c). There
is an integer Nw > 0 such that for n ≥ Nw,

|f(c)− g(c)| = |βw(c)− x| < m ≤ |f(c)|, c ∈ ∂Uw.

Now Theorem 1.13 (Rouché’s Theorem) implies that g(c) = fw,c(0)−x =
0 has a unique solution in Uw for any x in Bwn(c) and n ≥ Nw. Therefore
Wwn ⊆ Uw for n ≥ Nw. So diam(Wwn) ≤ 1/2k for n ≥ Nw.

Similar to the proof of Lemma 2.1, we have M̃wn = Wwn ∩M for
n ≥ Nw is connected. For each c in Wwn where n ≥ Nw, let Cwn(c) =
f−1

w,c(Bwn(c)). Then

fwn,c = f ◦(n+1)
w,c : C̊wn(c) → D̊w0(c)

is a quadratic-like map. Furthermore, since diam(Bwn(c)) tends to zero
as n goes to infinity uniformly on Uw, for Nw large enough we can have
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that the modulus mod(Awn(c)) ≥ 1 where Awn(c) = D̊w0(c) \ Cwn(c).
Moreover,

{fwn,c : C̊wn(c) → D̊w0(c) | c ∈ Wwn}
is a full family. Therefore, Wwn contains a copyMwn ⊆ M̃wn ofM (refer
to [23, pp. 102-106]). For c ∈ Ak+1 = ∪w∪ik≥NwMwik , qc is (k+1)-times
renormalizable where w = i0i1 . . . ik−1 runs over all sequences of integers
of length k. We thus construct a three-dimensional partition

{Wi0...ik}∞k=0

about the subset A(−2) = ∩∞k=1Ak.
For each c ∈ A(−2), qc is infinitely renormalizable. Furthermore, −2

is a limit point of A(−2). For each c ∈ A(−2), there is a correspond-
ing sequence w∞ = i0i1 . . . ik . . . of integers such that {c} = ∩∞k=0Wi0...ik .
Since M̃i0...ik = Wi0...ik ∩M is connected, {Wi0...ik}∞k=0 is a basis of con-
nected neighborhoods of M at c. In other words, M is locally con-
nected at c. Moreover, from our construction, qc is unbranched and has
complex bounds. Therefore the Julia set Jc is locally connected from
Theorem 1.8.

3 The proof of our main theorem

Proof of Theorem 1.12 (Main Theorem). Let c0 ∈ M be a Misiurewicz
point and Jc0 be its Julia set. Then there is the smallest integer m ≥ 1
such that p = q◦mc0

(0) is a repelling periodic point of qc0 of period k ≥ 1.
We start the construction of our subset A(c0) and a three-dimensional
partition {Ww | w = i0i1 · · · in, n = 0, 1, · · ·} around it as follows.

Let α be the separating fixed point of qc0 . Let G be the closure of
the union of external rays landing at α. Let ξ = {ηn}∞n=0 be the Yoccoz
partition about Jc0 (see §1.2). Let

p ∈ · · · ⊆ Dn(p) ⊆ Dn−1(p) ⊆ · · · ⊆ D1(p) ⊆ D0(p)

be a p-end, that means that p ∈ Dn(p) ⊆ Dn−1(p) and Dn(p) ∈ ηn. Let

c0 ∈ · · · ⊆ En(c0) ⊆ En−1(c0) ⊆ · · · ⊆ E1(c0) ⊆ E0(c0)

be a c0-end, this means that c0 ∈ En(p) ⊆ En−1(p) and En(p) ∈ ηn.

We have q
◦(m−1)
c0 (En+m−1(c0)) = Dn(p). Since the diameter diam(Dn(p))

tends to zero as n →∞ and since p is a repelling periodic point, we can
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find an integer l ≥ m such that |(q◦kc0
)′(x)| ≥ λ > 1 for all x ∈ Dl(p) and

such that q
◦(m−1)
c0 : El+m−1(c0) → Dl(p) is a homeomorphism. Let t ≥ 0

be the integer such that f = q◦tc0
: Dl(p) → Cr0 is a homeomorphism,

where Cr0 is the domain containing 0 in ηr0 , r0 ≥ 0. There is an integer
r > r0 such that r + t > l and such that B0 = f−1(Cr ∩Dl(p)) does not
contain p. Thus q◦tc0

: B0 → Cr is a homeomorphism. Define

Bn =
(
q◦nk
c0
|Dl+nk(p)

)−1

(B0) ⊆ Dl+nk(p)

for n ≥ 1. Note that Bn is in ηr+q+nk. Then q
◦(q+nk)
c0 : Bn → Cr is a

homeomorphism. By the Böttcher coordinates hc0 and hc, α, G, p, Cr,
Dn, and Bn, for n ≥ 0, are all preserved for c close to c0. Therefore they
can be constructed for qc as long as c close to c0 as we did for−2. Let U0 be
a neighborhood about c0 with diam(U0) ≤ 1 such that the corresponding
α(c), G0(c), p(c), Cr(c), Dn(c), and Bn(c), for n ≥ 0, are all preserved
for c ∈ U0. As n goes to infinity, the diameter diam(Bn(c)) tends to zero
uniformly on U0 and the set Bn(c) approaches to p(c) uniformly on U0.
Let

Wn = Wn(c0) = {c ∈ C | qm
c (0) ∈ Bn(c)}, n ≥ 1.

They give a partition in the parameter space.
Suppose U0 is simply connected and the boundary γ is a closed path

homologous to 0 in U0. Since the equation qm
c (0)− p(c) = 0 has a unique

solution c0 in U0 (following Thurston’s Theorem for critically finite ratio-
nal maps (see [5]) and also refer to [4]), m = minc∈γ |q◦mc (0)− p(c)| > 0.
Let f(c) = q◦mc (0) − p(c) and g(c) = q◦mc (0) − x for x ∈ Bn(c). Since
Bn(c) approaches p(c) uniformly on U0 as n goes to infinity, there is an
integer N0 = N0(c0) > 0 such that for n ≥ N0,

|f(c)− g(c)| = |p(c)− x| < m ≤ |f(c)|, x ∈ ∂U0.

Theorem 1.13 (Rouché’s Theorem) now implies that g(c) = q◦mc (0)−x = 0
has a unique solution, which is in U0, for any x in Bn(c) and n ≥ N0.
Therefore Wn ⊆ U0 for n ≥ N0. So diam(Wn) ≤ 1 for n ≥ N0. A
similar argument to the proof of Lemma 2.1 implies that, for n ≥ N0,
M̃n = M∩Wn is connected (see Figure 4).

For any c ∈ Wn, n ≥ N0, let Rn(c) be the pre-image of Bn(c) under
the map

q◦(m−1)
c0

: El+m−1(c) → Dl(p, c)
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Figure 4: A small copy of the Mandelbrot set and hairs around it.

and let Cm+r+q+nk(c) = q−1
c (Rn(c)). Then Cm+r+q+nk(c) is the closure of

a domain which contains 0 and which is in ηm+r+q+nk. Hence

fn,c = q◦(q+nk+m)
c : C̊m+r+q+nk(c) → C̊r(c)

is a quadratic-like map. Furthermore, since diam(Bn(c)) tends to zero as
n goes to infinity uniformly on U0, for N0 large enough we can have the
modulus mod(An(c)) ≥ 1 where An(c) = C̊r(c)\Cm+r+q+nk(c). Moreover,

{fn,c : C̊m+r+q+nk(c) → C̊r(c) | c ∈ Wn}
is a full family. Thus Wn contains a copy Mn = Mn(c0) of the Man-
delbrot set M (refer to [23, pp. 102-106]). Note that Mn ⊆ M̃n and
M̃n \ Mn is usually not empty (see Figure 4). For any c ∈ A1(c0) =
∪n≥N0Mn, qc is once renormalizable.

Now following almost the same arguments in the proof of Theo-
rem 1.14, We can construct a subset A(c0) and a three-dimensional par-
tition

{Ww(c0) | w = i0 · · · in, n = 0, 1, · · ·}
about it such that c0 is a limit point of A(c0) and such that every
c ∈ A(c0) is infinitely renormalizable at which M is locally connected.
Furthermore, qc is unbranched and has complex bounds from our con-
struction. Therefore the Julia set Jc is locally connected following The-
orem 1.8. It completes the proof.

Remark 3.1. Eckmann and Epstein [6] and Douady-Hubbard [4] have
estimated the size of Mn. Since M̃n \Mn contains hairs (see Figure 4)
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which may destroy the local connectivity of M, we must estimate the size
of M̃n. This is the key point in the proof.

Remark 3.2. Lyubich [18] constructed another subset consisting of in-
finitely renormalizable points such that M is locally connected at every
point in this subset. A point in his subset must satisfies several compli-
cate conditions. His idea is more close to Douady and Hubbard’s idea. A
point in our susbet may not satisfy those conditions. Our idea is different
and simple and originated in [11, 12, 13, 14].

Remark 3.3. In our proof of Theorem 1.12, the use of Rouché’s Theorem
is interesting. Actually, A three-dimensional partition in the parameter
space can be constructed around more general infinitely renormalizable
points (those points are not eventually (2, 2, 2, · · ·)-renormalizable) just
like we did in the proof. However finding a tool to replace Rouché’s The-
orem in the proof is an interesting problem. A candidate is Slodkowski’s
Theorem [26] for holomorphic motions. We would like to explore this in
the further research.
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