Asymptotic Hausdorff dimensions of Cantor sets associated with an asymptotically non-hyperbolic family

AIHUA FAN†‡, YUNPING JIANG§∥¶ and JUN WU†‡

† Department of Mathematics, Wuhan University, Wuhan 430072, People’s Republic of China
‡ LAMFA, UMR 6140, CNRS University of Picardie 33, rue Saint Leu 80039, Amiens, France (e-mail: ai-hua.fan@u-picardie.fr, wujunyu@public.wh.hb.cn)
§ Department of Mathematics, Queens College of CUNY, Flushing, NY 11367, USA
∥ Department of Mathematics, CUNY Graduate School, New York, NY 10016, USA
¶ Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China (e-mail: yunqc@forbin.qc.edu)

(Received 20 May 2004 and accepted in revised form 21 December 2004)

Abstract. The geometry of Cantor systems associated with an asymptotically non-hyperbolic family \((f_\epsilon)_{0 \leq \epsilon \leq \epsilon_0}\) was studied by Jiang (Geometry of Cantor systems. Trans. Amer. Math. Soc. 351 (1999), 1975–1987). By applying the geometry studied there, we prove that the Hausdorff dimension of the maximal invariant set of \(f_\epsilon\) behaves like \(1 - K\epsilon^{-1/\gamma}\) asymptotically, as was conjectured by Jiang (Generalized Ulam–von Neumann transformations. PhD Thesis, CUNY Graduate Center, May 1999).

1. Introduction

During the last two decades, Cantor sets have played an important role in the study of chaotic dynamical systems. The geometry and the dimension of a Cantor set thus becomes interesting and important.

In the construction of a Cantor set on the real line \(\mathbb{R}\), we remove infinitely many subintervals which are called the gaps of the Cantor set. The sizes and positions of these gaps determine the geometry and then the dimension of the Cantor set. In this paper we show how the dimension is quantitatively determined by the geometry.

Let \(\mathcal{I} = \{\mathcal{I}_n\}_{n=0}^{\infty}\) be a sequence of families of disjoint, non-empty and compact intervals, and let \(\mathcal{G} = \{\mathcal{G}_n\}_{n=1}^{\infty}\) be a sequence of families of disjoint, non-empty and open intervals.
Definition 1. We call $C = \{I, G\}$ a Cantor system if:

(1) for each $0 \leq n < \infty$ and for each interval $I \in I_n$, there is a unique interval G in G_{n+1} and two intervals L and R in I_{n+1} which lie to the left and to the right of G such that $I = L \cup G \cup R$ (see Figure 1);

(2) $\Lambda = \cap_{n=0}^{\infty} \bigcup_{I \in I_n} I$ is totally disconnected.

The set Λ is called a Cantor set. We call each interval $I \in I_n$ an n-level bridge and call each interval $G \in G_n$ an n-level gap.

Definition 2. The bridge geometry of C is the set of ratios

$$BR = \bigcup_{n=0}^{\infty} \left\{ \frac{|J|}{|I|} : I = L \cup G \cup R \in I_n \text{ with } J = L \text{ or } R \in I_{n+1} \text{ and } G \in G_{n+1} \right\}.$$

The gap geometry of C is the set of ratios

$$GAP = \bigcup_{n=0}^{\infty} \left\{ \frac{|G|}{|J|} : I = L \cup G \cup R \in I_n \text{ with } J = L \text{ or } R \in I_{n+1} \text{ and } G \in G_{n+1} \right\}.$$

The bridge geometry and the gap geometry of a family of Cantor systems dynamically defined by a family of folding maps depending on a small parameter $\epsilon > 0$ has been studied in [Jia2]. Such families are defined as follows.

Let $\gamma > 1$ be a fixed positive number. The following definition is from [Jia2]. The reader may refer to [Jia2] or [Jia3] for the definition of the Schwarzian derivative and its properties. The reader may also refer to Figure 2 for the following definition.

Definition 3. Let $F = \{f_\epsilon : [-1, 1] \to \mathbb{R} \}_{0 \leq \epsilon \leq \epsilon_0}$ be a family of folding mappings. We say that F is asymptotically non-hyperbolic if:

(1) every $f_\epsilon(x) = h_\epsilon(-|x|')$, where $h_\epsilon : [-1, 0] \to [-1, 1 + \epsilon]$ is a C^3 orientation-preserving diffeomorphism having non-positive Schwarzian derivative on $[-1, 0]$ such that $h_\epsilon(-1) = -1$ and $h_\epsilon(0) = 1 + \epsilon$;

(2) there is a constant $K > 0$ such that $(\log h_\epsilon'(x))' \leq K$ for all $-1 \leq x \leq 0$ and all $0 \leq \epsilon \leq \epsilon_0$; and

(3) there is a constant $\lambda > 1$ such that $f_\epsilon'(-1) \geq \lambda$ for all $0 \leq \epsilon \leq \epsilon_0$.

Let $F = \{f_\epsilon : [-1, 1] \to \mathbb{R} \}_{0 \leq \epsilon \leq \epsilon_0}$ be an asymptotically non-hyperbolic family. For each $0 < \epsilon \leq \epsilon_0$, let $I_{n, \epsilon}$ be the set of intervals in (i.e. connected components of)
Asymptotic Hausdorff dimensions of Cantor sets

\[f_{\epsilon}^{-n}([-1,1]) \] and let \(G_{n,\epsilon} \) be the set of intervals in (i.e. connected components of) \(f_{\epsilon}^{-n}((1,1+\epsilon)) \). Let

\[\mathcal{I}_\epsilon = \{\mathcal{I}_{n,\epsilon}\}_{n=0}^{\infty} \quad \text{and} \quad \mathcal{G}_\epsilon = \{\mathcal{G}_{n,\epsilon}\}_{n=1}^{\infty}. \]

Then \(\mathcal{C}_\epsilon = \{\mathcal{I}_\epsilon, \mathcal{G}_\epsilon\} \) is a Cantor system dynamically defined by \(f_{\epsilon} \). Let

\[\Lambda_\epsilon = \bigcap_{n=0}^{\infty} \bigcup_{I \in \mathcal{I}_{n,\epsilon}} I \]

be the Cantor set obtained from the Cantor system \(\mathcal{C}_\epsilon = \{\mathcal{I}_\epsilon, \mathcal{G}_\epsilon\} \). It is just the maximal invariant set of \(f_{\epsilon} \).

One example of such a family is the maps defined on \([-1,1]\) by

\[f_{\epsilon}(x) = 1 + \epsilon - (2 + \epsilon)|x|^\gamma \]

where \(\gamma > 1 \) is fixed and \(\epsilon > 0 \) is a parameter. In Definition 3, the dynamical system \(f_{\epsilon} \) is hyperbolic when \(\epsilon > 0 \) and ceases to be hyperbolic when \(\epsilon = 0 \). It was shown in [Jia2] that for Cantor systems defined by \(f_{\epsilon} \), the bridge geometry is uniformly bounded and the gap geometry is regulated by the function \(a(\epsilon) = \epsilon^{1/\gamma} \) (see Theorem 2 in §2).

These geometry properties are keys for us to prove the following theorem. Let \(\dim \Lambda_\epsilon \) denote the Hausdorff dimension of \(\Lambda_\epsilon \). We now give the main theorem in this paper.

Theorem 1. (Main theorem) There exists constants \(K > 0 \) and \(\epsilon_1 > 0 \) such that

\[1 - K^{-1}\epsilon^{1/\gamma} \leq \dim \Lambda_\epsilon \leq 1 - K\epsilon^{1/\gamma} \quad \text{for all} \quad 0 < \epsilon \leq \epsilon_1. \]
One can compare \(\dim \Lambda_c \) in the theorem with the Hausdorff dimension \(\dim J_c \) of the Julia set \(J_c \) of \(z \to z^2 + c \). It is known that \(\dim J_c \) is a real analytic function of \(|c| \) in any hyperbolic component. In particular, Ruelle proved in [Rue] that

\[
\dim J_c = 1 + \frac{|c|^2}{4} + o(|c|^2)
\]

when \(c \) is in the main cardioid of the Mandelbrot set. Thus, when restricted on the real line, \(\dim J_c \) is real analytic on \([0, \frac{1}{4}) \cup (\frac{1}{4}, \infty)\). However, Bodart and Zinsmeister proved in [BZ] that \(\dim J_c \) is left continuous at the point \(\frac{1}{4} \), and Douady et al proved in [DSZ] that \(\dim J_c \) is not right continuous at the point \(\frac{1}{4} \) and the derivative tends to \(+\infty \) from the left at the point \(\frac{1}{4} \) like \((\frac{1}{4} - c)^{\dim J_c} - 3/2\). When restricted on the real line, \(\dim J_c \) is real analytic on \((-\infty, -2)\). The theorem in this paper showed that \(\dim J_c \) is continuous from the left at \(-2\) and the derivative tends to \(+\infty \) from the left of \(-2\) like \(\frac{1}{\sqrt{2} - |c|} \). A similar phenomenon occurs in the study of Riemann surfaces. In [PS], Pignataro and Sullivan showed that \(\dim \Lambda_c \) of the limit set \(\Lambda_c \) of the Fuchsian group generated by \(z \to -1/z \) and \(z \to z + 2 + \epsilon \) differs from 1 by \(\sqrt{\epsilon} \) and the derivative at the critical point \(\epsilon = 0 \) tends to \(\infty \) like \(1/\sqrt{\epsilon} \). However, we would like to point out the difference from the cases in [BZ, DSZ, PS] to the case we study: the asymptotic geometry in [BZ, DSZ, PS] is the parabolic type, but the asymptotic geometry studied in [Jia1, Jia2] and in this paper is the post-critical finite type.

The paper is organized as follows. In §2, we review the result from [Jia2] about the geometry of Cantor systems generated by an asymptotically non-hyperbolic family of folding mappings (see Theorem 2). The upper bound \(1 - K\epsilon^{1/\gamma} \) of the Hausdorff dimension of \(\Lambda_c \) is already known from [Jia1, Jia2]. For the completeness of this paper, we also write the proof in §3 as Lemma 1. The main effort of this paper is to prove the lower bound. We also do this in §3. The main ingredients in the proof of the lower bound are the asymptotic geometry from [Jia2] (see Theorem 2), an inequality from [KaPe] (see also [Fan]), the Frostman theorem (see [Fal, Mat]) and an idea used to treat a family of linear Cantor sets in [Jia2].

2. Asymptotically non-hyperbolic families

In this paper, we will always use \(K > 0 \) and \(K' > 0 \), etc., to denote a constant independent of \(\epsilon \) although it may differ in different places.

Let \(\mathcal{BR}_\epsilon \) be the bridge geometry and \(\mathcal{GAP}_\epsilon \) be the gap geometry of \(\mathcal{C}_\epsilon \).

THEOREM 2. [Jia2] For each \(0 < \epsilon \leq \epsilon_0 \), the dynamically defined interval system \(\mathcal{C}_\epsilon \) is a Cantor system whose bridge geometry is uniformly bounded:

\[
|\log(br(\epsilon))| \leq K
\]

for all \(br(\epsilon) \in \mathcal{BR}_\epsilon \) and all \(0 < \epsilon \leq \epsilon_0 \), and whose gap geometry is regulated by the function \(\alpha(\epsilon) = \epsilon^{1/\gamma} \):

\[
|\log \left(\frac{gg(\epsilon)}{\alpha(\epsilon)} \right) | \leq K
\]

for all \(gg(\epsilon) \in \mathcal{GAP}_\epsilon \) and all \(0 < \epsilon \leq \epsilon_0 \). Moreover, for all \(0 < \epsilon \leq \epsilon_0 \) and for all integers \(n, m, k \geq 1 \), if \(J \in \mathcal{I}_{n+m+k,\epsilon} \) and \(J \subset I \in \mathcal{I}_{n+k,\epsilon} \), then we have \(f_{n}^{\epsilon}(I) \in \mathcal{I}_{m+n,\epsilon} \).
and \(f_k^\varepsilon(I) \in \mathcal{I}_{n,\varepsilon} \) and

\[
\frac{e^{-K}}{|f_k^\varepsilon(J)|} \leq \frac{|J|}{|I|} \leq \frac{e^K}{|f_k^\varepsilon(I)|}
\]

\((***)\)

We would like to note that each map \(f_\varepsilon \) in the family is not expanding under the Euclidean metric. Under the hyperbolic metric on \((-2 - \varepsilon, 2 + \varepsilon)\), \(f_\varepsilon \) is expanding. However, the hyperbolic metric depends on \(\varepsilon \). So the proof of the above theorem depends on a deep understanding of the Koebe distortion principle \([\text{Jia3}]\). The reader who is interested in the Koebe distortion principle should refer to \([\text{Jia3}, \text{Ch. 2}]\) for details.

The main purpose of this paper is to use the geometry in the above theorem to estimate the Hausdorff dimension of \(\Lambda_\varepsilon \) from below.

3. The proof of Main Theorem

The proof is decomposed into several lemmas. We first give the proof of the upper bound obtained in \([\text{Jia1, Jia2}]\) as the following lemma.

Lemma 1. There is a constant \(K' > 0 \) such that

\[
\dim \Lambda_\varepsilon \leq 1 - K'\varepsilon^{1/\gamma}.
\]

Proof. The family \(\mathcal{I}_{n,\varepsilon} \) is a natural cover of \(\Lambda \). Define

\[
S_n(\beta) = \sum_{J \in \mathcal{I}_{n,\varepsilon}} |J|^{\beta}, \quad 0 < \beta \leq 1.
\]

We only have to show \(S_n(\beta) = O(1) \) for \(\beta > 1 - K\varepsilon^{1/\gamma} \).

Intervals in \(\mathcal{I}_{n,\varepsilon} \) are grouped two by two. Each couple \(J, J' \subset \mathcal{I}_{n,\varepsilon} \), together with a gap \(G \in \mathcal{G}_{n,\varepsilon} \), are associated with an interval \(I \in \mathcal{I}_{n,\varepsilon} \) such that \(I = J \cup G \cup J' \). Then

\[
S_n(\beta) = \sum_{I = J \cup G \cup J' \in \mathcal{I}_{n-1,\varepsilon}} (|J|^\beta + |J'|^\beta).
\]

Note that from \((*)\) and \((**)\) we have

\[
|J| + |J'| = |I| - |G| = |I| \left(1 - \frac{|G|}{|I|}\right) \leq |I|(1 - e^{-2K\varepsilon^{1/\gamma}}).
\]

We apply the Hölder inequality, \(a^\beta + b^\beta \leq 2^{1-\beta}(a + b)^\beta \), to get

\[
S_n(\beta) \leq 2^{1-\beta} \sum_{I \in \mathcal{I}_{n-1,\varepsilon}} ((|J| + |J'|)^\beta \leq 2^{1-\beta}(1 - e^{-2K\varepsilon^{1/\gamma}})^\beta S_{n-1}(\beta).
\]

Inductively, we get

\[
S_n(\beta) \leq 2^{(1-\beta)n}(1 - e^{-2K\varepsilon^{1/\gamma}})^n\beta.
\]

Let \(\beta(\varepsilon) > 0 \) be the number such that

\[
2^{1-\beta(\varepsilon)}(1 - e^{-2K\varepsilon^{1/\gamma}})^{\beta(\varepsilon)} = 1.
\]

Then \(\dim(\Lambda_\varepsilon) \leq \beta(\varepsilon) \). Solving the last equality, we have

\[
\dim(\Lambda_\varepsilon) \leq \beta(\varepsilon) = \frac{\ln 2}{\ln 2 - \ln(1 - e^{-2K\varepsilon^{1/\gamma}})} \leq 1 - K'\varepsilon^{1/\gamma}.
\]

This completes the proof of Lemma 1.
Now we show the lower bound for \(\text{dim} \Lambda_1 \). Let
\[
0 < \kappa = e^{-5K}/2 < 1
\]
where \(K \) is the constant appearing in (**), (***) and (***)

Let \(0 < \kappa = e^{-5K/2} < 1 \)

Let \(s_n = s_n(\epsilon) \) and \(t_n = t_n(\epsilon) \) be two numbers determined by
\[
\sum_{I \in \mathcal{I}_{n,\epsilon}} |\kappa I|^s_n = 1 \quad \text{and} \quad \sum_{I \in \mathcal{I}_{n,\epsilon}} |I|^t_n = 1.
\]

It is clear that \(0 < s_n \leq t_n < 1 \).

Lemma 2. We have \(\lim_{n \to \infty} (t_n - s_n) = 0 \).

Proof. Since \(s_n \leq t_n \),
\[
1 \leq \sum_{I \in \mathcal{I}_{n,\epsilon}} |I|^t_n \leq \sum_{I \in \mathcal{I}_{n,\epsilon}} (\kappa |I|^s_n \kappa^{-s_n} = \kappa^{-s_n} \leq \kappa^{-1}.
\]

From (**), there is a constant \(0 < \tau < 1 \) such that \(|I| \leq \tau^n \) for every \(I \in \mathcal{I}_{n,\epsilon} \). We have further that
\[
\kappa^{-1} \geq \sum_{I \in \mathcal{I}_{n,\epsilon}} |I|^s_n = \sum_{I \in \mathcal{I}_{n,\epsilon}} |I|^t_n |I|^{-(t_n-s_n)} \geq \tau^{-n(t_n-s_n)}.
\]

This implies that
\[
0 \leq t_n - s_n \leq \frac{\ln \kappa^{-1}}{n \ln \tau}.
\]

This proves Lemma 2. \(\Box \)

The following lemma used in [KaPe] (see also [Fan]) is also useful for us.

Lemma 3. We have \(a^\beta + \beta b^\beta \geq (a + b)^\beta \), for all \(a \geq b \geq 0 \) and for all \(0 < \beta \leq 1 \).

Proof. The inequality is equivalent to \(\beta x^\beta \geq (1 + x)^\beta - 1 \) for all \(0 \leq x \leq 1 \). However, the latter is a direct consequence of the mean value theorem applied to \((1 + x)^\beta \). \(\Box \)

Lemma 4. We have \(\text{dim}(\Lambda_\epsilon) \geq s_n \).

Proof. Let \(g = f_\epsilon^n \). We let \(n \) be fixed in this lemma. Consider the sub-Cantor systems \((\mathcal{I}_{m,n,\epsilon}, \mathcal{G}_{m,n,\epsilon})_{m \geq 1} \). Define a measure \(\mu \) on \(\Lambda_\epsilon \) as follows.

Suppose that \(J_{mn} \in \mathcal{I}_{m,n,\epsilon} \). Then \(g^i(J_{mn}) \in \mathcal{I}_{(m-i)n,\epsilon} \) for \(0 \leq i \leq m - 1 \). Let \(I_i \in \mathcal{I}_{n,\epsilon} \) be the unique interval containing \(g^i(J_{mn}) \) (see Figure 3). Then define
\[
\mu(\Lambda_\epsilon \cap J_{mn}) = (\kappa |I_0|)^{s_n}(\kappa |I_1|)^{s_n} \cdots (\kappa |I_{m-1}|)^{s_n}.
\]

Note that if \(J_{(m-1)n} \in \mathcal{I}_{(m-1)n,\epsilon} \) is the interval containing \(J_{mn} \), then
\[
\mu(\Lambda_\epsilon \cap J_{(m-1)n}) = (\kappa |I_0|)^{s_n}(\kappa |I_1|)^{s_n} \cdots (\kappa |I_{m-2}|)^{s_n}.
\]

Therefore,
\[
\mu(\Lambda_\epsilon \cap J_{mn}) = \mu(\Lambda_\epsilon \cap J_{(m-1)n})(\kappa |I_{m-1}|)^{s_n}
\]
and, consequently,
\[
\mu(\Lambda_\epsilon \cap J_{(m-1)n}) = \sum_{J_{mn} \subset J_{(m-1)n}} \mu(\Lambda_\epsilon \cap J_{mn}).
\]
Asymptotic Hausdorff dimensions of Cantor sets

Figure 3.

So, according to the Kolmogorov extension theorem, \(\mu \) is a well-defined Borel probability measure concentrated on \(\Lambda_\epsilon \).

We now estimate \(\mu(B_r(x)) \), where \(B_r(x) \) is the ball centered \(x \) of radius \(r \). Let

\[
\delta = \min \left\{ |G| : G \in \bigcup_{1 \leq k \leq n} \mathcal{G}_{k,\epsilon} \right\}
\]

be the minimal gap-length of gaps in \(\bigcup_{1 \leq k \leq n} \mathcal{G}_{k,\epsilon} \). Assume that \(x \in \Lambda_\epsilon \). There is a sequence of nested intervals

\[
x \in \cdots \subset J_{mn} \subset J_{(m-1)n} \subset \cdots \subset J_{2n} \subset J_n \quad \text{where} \quad J_{mn} \in \mathcal{I}_{mn,\epsilon}.
\]

Assume that \(0 < r < d \). Let \(m \) be the unique integer such that

\[
\delta^m \mu(J_{mn}) \leq r^m < \delta^m \mu(J_{n(m-1)}).
\]

Adjacent to \(J_{mn} \) there are two gaps. One is an \(mn \)-level gap \(G \in \mathcal{G}_{mn,\epsilon} \) and the other is a lower level gap \(G' \). Any other interval \(J' \in \mathcal{I}_{mn,\epsilon} \) different from \(J_{mn} \) is separated from \(J_{mn} \) by a gap of length at least \(\min\{|G'|, |G|\} \). We claim that

\[
\min\{|G'|, |G|\} \geq \delta^{-s_n} r^m.
\]

Suppose that the claim is true. Then \(B_r(x) \) intersects with \(J_{mn} \) but none of the others in \(\mathcal{I}_{mn,\epsilon} \). Thus,

\[
\mu(\Lambda_\epsilon \cap B_r(x)) \leq \mu(J_{mn}) \leq \delta^{-s_n} r^m.
\]

So by the mass distribution principle (see [Fal]), we get \(\dim(\Lambda_\epsilon) \geq s_n \).

We now prove the claim. First, from the gap geometry (***) we have

\[
|G| \geq e^{-K \epsilon^{1/\gamma}} |J_{mn}|.
\]

Write

\[
|J_{mn}| = \frac{|J_{mn}|}{|J_{n(m-1)}|} \cdots \frac{|J_{n(m-i+1)}|}{|J_{n(m-i)}|} \cdots \frac{|J_{2n}|}{|J_n|} \frac{|J_n|}{|G_n|} |G_n|,
\]
where G_n is the gap in $G_{n,\epsilon}$ adjacent to J_n (see Figure 4). We have, again from (**),

$$\frac{|J_n|}{|G_n|} \geq e^{-K} \frac{1}{\epsilon^{1/\gamma}}.$$

We also have $|G_n| \geq \delta$ by the definition of δ. Using the first inequality in (***) (refer to Figure 4), we get

$$|J_{n(m-i)}| \geq e^{-K} |g^{m-i}(J_{n(m-i)})| = e^{-K} \frac{|I_i|}{|[-1, 1]|} = e^{-K} \frac{|I_i|}{2}.$$

Thus, we have

$$|G| \geq e^{-K} \epsilon^{1/\gamma} \cdot \prod_{k=1}^{m-1} \frac{e^{-K} |I_k|}{2} \cdot \delta = e^{-2K} \cdot \prod_{k=1}^{m-1} \frac{e^{-K} |I_k|}{2} \cdot \delta.$$

On the other hand, assume $G' \in G_{k,\epsilon}$ for some $1 \leq k < mn$. Let I' be the interval in $I_{k,\epsilon}$ adjacent to G' but containing J_{mn}. Then

$$|G'| \geq e^{-K} \epsilon^{1/\gamma} |I'| = e^{-K} \epsilon^{1/\gamma} \frac{|J_{mn}|}{|G|} \cdot |G| \geq e^{-K} \epsilon^{1/\gamma} \cdot 1 \cdot e^{-K} \epsilon^{1/\gamma} |G| = e^{-2K} |G|.$$

Thus

$$\min(|G'|, |G|) \geq e^{-4K} \cdot \prod_{k=1}^{m-1} \frac{e^{-K} |I_k|}{2} \cdot \delta \geq (\kappa |I_1|) (\kappa |I_2|) \cdots (\kappa |I_{m-1}|) \delta = \delta (\mu(J_{(m-1)n}))^{1/s_n}.$$

This proves the claim. \square
LEMMA 5. We have \(\limsup_{n \to \infty} t_n \geq 1 - K^{-1} \epsilon^{1/\gamma} \).

Proof. The upper bound in our main theorem will be a consequence of Lemmas 2, 4 and 5. We are going to estimate from below the quantity

\[S_n(\beta) = \sum_{J \in J_{n,\epsilon}} |J|^\beta. \]

As in our lower bound estimation, for each \(I \in I_{n-1,\epsilon} \), let \(J \) and \(J' \) be the two intervals in \(I_{n,\epsilon} \) such that \(I = J \cup G \cup J' \in I_{n-1,\epsilon} \) where \(G \in G_{n,\epsilon} \) is the \(n \)-level gap contained in \(I \).
Assume that \(|J'| \geq |J| \) without loss of generality. Then, by Lemma 3, we have

\[|J'|^\beta + |J|^\beta \geq \left(1 - \beta \right) |I|^\beta + (|J'| + |J|)^\beta \]

\[= \left[\left(1 - \beta \right) \left(\frac{|J|}{|I|} \right) ^\beta + \left(1 - G \right) \right] |I|^\beta. \]

Note that (\(*\)) and (\(**\)) imply

\[\left(\frac{|J|}{|I|} \right) ^\beta \geq e^{-\beta K} \geq e^{-K} \quad \text{and} \quad 1 - \frac{|G|}{|I|} \geq 1 - e^K \epsilon^{1/\gamma}. \]

So, let \(A = e^K > 1 \). Then

\[|J'|^\beta + |J|^\beta \geq f(\beta) |I|^\beta, \]

where

\[f(\beta) = \left(1 - \beta \right) A^{-1} + (1 - A \epsilon^{1/\gamma})^\beta. \]

Thus, we have

\[S_n(\beta) = \sum_{I \in I_{n-1,\epsilon}} \left(|J|^\beta + |J'|^\beta \right) \geq f(\beta) S_{n-1}(\beta). \]

Inductively,

\[S_n(\beta) \geq (f(\beta))^n. \]

Since \(f(0) > 1 \) and \(f(1) < 1 \) and \(f'(\beta) < 0 \) for \(0 \leq \beta \leq 1 \) and small \(\epsilon > 0 \), there is an \(\epsilon_1 > 0 \) such that for every \(0 \leq \epsilon \leq \epsilon_1 \), there is a unique solution \(0 < \beta(\epsilon) \leq 1 \) for the equation \(f(\beta) = 1 \), i.e.

\[(1 - \beta(\epsilon)) A^{-1} + (1 - A \epsilon^{1/\gamma})^\beta(\epsilon) = 1. \]

Then \(t_n \geq \beta(\epsilon) \). Now we only need to estimate \(\beta(\epsilon) \).

From the implicit function theorem, \(\beta(\epsilon) \) is continuous on \([0, \epsilon_1]\) and \(C^1 \) on \((0, \epsilon_1]\). Differentiate on the both sides of the last equality to get

\[\beta'(\epsilon) = -\frac{A \beta(\epsilon) (1 - A \epsilon^{1/\gamma})^{\beta(\epsilon)-1}}{\gamma (A^{-1} - (1 - A \epsilon^{1/\gamma})^{\beta(\epsilon)} \ln(1 - A \epsilon^{1/\gamma}) \cdot \epsilon^{1/\gamma} - 1). \]

So there is a constant \(K > 0 \) such that

\[\beta'(\epsilon) \geq -\frac{1}{K \gamma} \epsilon^{1/\gamma - 1}. \]

Integrate on both sides and note that \(\beta(0) = 1 \), we have

\[\beta(\epsilon) \geq 1 - K^{-1} \epsilon^{1/\gamma}. \]

This completes the proof. \qed
Acknowledgements. The first author is partially supported by CKSP. The second author is partially supported by PSC-CUNY awards and Hundred Talents Program from Academia Sinica. The third author is partially supported by the Kua-Shi-Ji Foundation of Educational Committee and the Special Funds for Major State Basic Research Projects of China.

REFERENCES

