part 1: Symmetric circle homeomorphism and its extensions.

Def 1 A circle homeomorphism \(h \) is called quasi-symmetric if there exists a constant \(M > 1 \) such that

\[
\frac{1}{M} \leq \frac{H(x+t) - H(x)}{H(x) - H(x-t)} \leq M, \quad \forall x \in \mathbb{R}, \forall t > 0.
\]

It is called symmetric, if there exists a positive function \(\varepsilon(t) \) such that \(\varepsilon(t) \to 0 \) as \(t \to 0^+ \) and

\[
\frac{1}{1 + \varepsilon(t)} \leq \frac{H(x+t) - H(x)}{H(x) - H(x-t)} \leq H \varepsilon(t), \quad \forall x \in \mathbb{R}, \forall t > 0
\]

Note: \(h: \mathbb{S}^1 \to \mathbb{S}^1 \) and \(H: \mathbb{R} \to \mathbb{R} \)

\(\mathbb{R} \) is a universal cover of \(\mathbb{S}^1 \): \(\pi(x) = e^{2\pi i x}: \mathbb{R} \to \mathbb{S}^1 \)

In this way, we can think \([0,1]\) as the unit circle \(\mathbb{S}^1 \).

Symmetric triples

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(x+t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of symmetric:

\(H \) is differentiable.

\(Q.S: \quad \frac{1}{|x|} \leq \frac{R}{L} \leq |x| \)

\(S: \quad \frac{1}{1+\varepsilon(t)} \leq \frac{R}{L} \leq H \varepsilon(t) \)
Let's use unit disc model: \(\Delta \).

\(M(\Delta) = \) unit ball of the complex Banach space \(L^1(\Delta) \).

An element \(M(M) \) is called a Beltrami coefficient on \(\Delta \).

Let \(f \) be a homeomorphism from \(\Delta \) onto \(\Delta \) satisfying

\[
\frac{f_3}{f_2} = \mu(\theta) \quad \text{for almost all } \theta \in \Delta.
\]

Then \(f \) is quasiconformal. (\(\| \mu(\theta) \|_{L^1} < 1 \))

Def 2: A quasiconformal map \(f \) is said to be asymptotically conformal if for any \(\varepsilon > 0 \), there exists a compact subset \(\Omega \) in \(\Delta \), such that \(\| \mu(\theta) \|_{L^1(\Omega)} \) is less than \(\varepsilon \).

Another understanding: \(\mu(\theta) \to 0 \) as \(\varepsilon \to 0 \).

Prop: Suppose \(h: S' \to S' \) is the boundary map of \(f: \Delta \to \Delta \).

Then \(\partial h \) is quasisymmetric (\(\Rightarrow \)) \(f \) is quasiconformal.

(2) \(h \) is symmetric (\(\Rightarrow \)) \(f \) is asymptotically conformal.
idea of proof of prop:

If h is quasi-symmetric or symmetric, we can use Beurling–Ahlfors extension of h to calculate $\mathcal{M}(\theta)$.

Note: $h: \mathbb{R} \to \mathbb{R}$

$$BA(h)(x, y) = \frac{i}{2\pi} \int_{-\infty}^{\infty} h(x+y) \, dt$$

where $U(x, y) = \frac{1}{2y} \int_{x}^{y} h(x+t) \, dt$

$$V(x, y) = \frac{1}{y} \int_{x}^{y} (h(x+t) - h(x-t)) \, dt$$

$BA(h): \mathbb{R}^2 \to \mathbb{R}^2$

3) Partial derivatives: U_x, U_y, V_x, V_y ...

We need a lemma for this direction.

Lemma 1: If h is M-qs and a finite qe extension of f is k-qc, then $M \leq C(k)$ where $(k_n) \to 1$ as $k \to 1$.

If f is asymptotically conformal,

$$\text{define } f_n^* = \frac{f}{k_n} \text{ on } \Delta / \mathbb{R}^n$$

$$\lim_{n \to \infty} \frac{M_{f_n^*}}{M_{f_n}} = 1$$

$$\lim_{n \to \infty} \frac{M_{f_n}}{M_{f_n^*}} = 1$$

Boundary map of $M_{f_n^*}$ is real analytic.

Note: $M_{f_n^*} = 0$ on Δ / \mathbb{R}^n
Prop 2: Suppose h is symmetric on an interval $[a, b]$, then

$\exists s$ such that f is AC in a nbhd of $[a+s, b-s]$.

Note:
1. Schwartzian derivative $\rightarrow 0$ as $|h| \rightarrow 1$.
2. Douady-Earle extension: $\mu_{DE}(h) \rightarrow 0$ as $|h| \rightarrow 1$ for symmetric h.

and it has similar result as prop 2.

Prop 3: Teichmüller’s metric coincides with Kobayashi’s metric on $\mathcal{T}_0 =$ space of all symmetric h.

Idea: By Strebel’s frame mapping theorem,

$\exists \mu_0 \sim \mu_f$ and $\mu_0 = k_0 \frac{h_0}{h_0}$, Teichmüller form.

Construct

$\mu_{fn} = \mu_0$

$\Gamma_{\mu_0} \in \mathcal{T}_0$
part 2: Markov partition with Bounded Geometry

\[q(x) = \begin{cases} \frac{3}{4} & x \in \left[\frac{1}{2}, 1\right] \\ 2x - 1 & x \in \left(0, \frac{1}{2}\right] \end{cases} \]

pre-images of $1: q^{-n}(1)$

\[I_0 \quad I_1 \]

\[I_{00} \quad I_{01} \quad I_{10} \quad I_{11} \]

\[I_{000} \quad I_{001} \quad I_{010} \quad I_{011} \quad I_{100} \quad I_{101} \quad I_{110} \quad I_{111} \]

\[0 \quad \frac{1}{8} \quad \frac{4}{8} \quad \frac{5}{8} \quad \frac{6}{8} \quad \frac{7}{8} \quad 1 \]

\[0 \quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{3}{4} \quad 1 \]

\[I_{\infty} \text{ has two subintervals } I_{\infty 0} \text{ and } I_{\infty 1} \]

\[I_{\infty} \text{ has two preimages } I_{\infty 0} \text{ and } I_{\infty 1} \]
suppose \(f \) is a degree 2 circle endomorphism.

\(f^{-n}(1) \) gives us a Markov partition.

\[\begin{array}{c}
I_0 & I_1 \\
\hline
I_{00} & I_{01} & I_{01} & I_{11} \\
\hline
\end{array} \]

1. \(f \) has bounded geometry if \(\frac{|I_{w_0}|}{|I_{w_1}|} \leq M, \frac{|I_{w_1}|}{|I_{w_0}|} \leq M \) for any \(w_n \)

2. \(f \) has bounded nearby geometry if \(\frac{|I_{w_n}|}{|I_{w_n}|} \leq M \) for any adjacent intervals \(I_{w_n}, I_{w_{n+1}} \)

Prop 4: \(h : [0,1] \to [0,1] \) is \(M \)-q.s.s.

\(h \) maps partition pts of \(g \) to partition pts of \(f \).

Then \(f \) has bounded nearby geometry.

Idea: on level \(n \):

\[
\begin{array}{c}
\frac{L}{2^n} & \frac{R}{2^n} \\
\hline
h & 1 \\
\frac{1}{M} \leq \frac{h(L)}{h(R)} \leq M \\
\end{array}
\]
Def 3. A circle endomorphism \(f \) is called uniformly quasisymmetric if there exists a constant \(M > 1 \) such that
\[
\frac{1}{M} \leq \frac{F^{-n}(x+t) - F^{-n}(x)}{F^{-n}(x) - F^{-n}(x-t)} \leq M, \quad \forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad \forall t > 0.
\]

Prop 5. \(f \) is UQS \(\iff \) bounded nearly geometry \(\iff \) \(h \) is QS

where \(f = h \circ g \circ h^{-1} \)

Def 4. We say a circle endomorphism \(f \) preserves the Lebesgue measure \(m \) if
\[
m (f^{-1}(A)) = m(A)
\]
holds for all Borel subsets \(A \subseteq S \).

For degree 2 \(\mathbb{Z} \) Lebesgue invariant \(f \):
\[
|I_{m_1}| = |I_{m_0}| + |I_{m_1}|
\]

\[
I_0 \quad I_1
\]

\[
I_{00} \quad I_{01} \quad I_{10} \quad I_{11}
\]

\[
|I_{m_0}| = |I_{m_{00}}| + |I_{m_{10}}|
\]

\[
I_{00} \quad I_{01} \quad I_{10} \quad I_{11}
\]

\[
I_{00} \quad I_{01} \quad I_{10} \quad I_{11}
\]
Prop 6: If f is UQS and Lebesgue invariant, then the limit $\lim_{n \to \infty} \frac{I_{W_n}}{I_{w_0}}$ and $\lim_{n \to \infty} \frac{|I_{W_n}|}{|I_{w_0}|}$ exists along almost all dynamical paths.

Example 1: $g(x) = x^2$

$$|I_{W_n}| = 2, \quad \frac{|I_{W_n}|}{|I_{w_0}|} = 2$$

for any W_n.

Example 2: $f(x) = \begin{cases} \frac{3}{2}x + \frac{1}{2}, & x \in (0, \frac{1}{2}] \\ \frac{3}{2}x + \frac{1}{2} - 1, & x \in (\frac{1}{2}, \frac{3}{4}] \\ 3x - 2, & x \in (\frac{3}{4}, 1] \end{cases}$
Prop 7: Suppose \(f \) and \(g \) are both UAS and Lebesgue invariant. If \(f = h \circ g \circ h^{-1} \) and \(h \) is symmetric, then partitions of \(f \) and partitions of \(g \) have same type "father/son" limits along almost all dynamical paths.

\[
\begin{align*}
\text{f:} & \\
I_0 & \quad I_0 & \quad I_0 & \quad I_1 \\
\text{g:} & \\
\text{h maps partitions to partitions.} & \\
h(I_0) & \quad h(I_0) & \quad h(I_0) & \quad h(I_1) \\
\end{align*}
\]

\[
\text{h is symmetric} \\
\begin{align*}
\frac{\text{father}}{\text{son}} & \quad \frac{|I_{\text{son}}|}{|I_{\text{father}}} \left(\text{or } \frac{|I_{\text{son}}|}{|I_{\text{son}}} \right) = \frac{|h(I_{\text{son}})|}{|h(I_{\text{father}})} \left(\text{or } h(I_{\text{son}}) \right) \\
\end{align*}
\]

Main theorem of the new paper:
Let \(f \) and \(g \) be two circle endomorphisms of degree \(d \geq 2 \) such that each has bounded geometry, preserves the Lebesgue measure, and fixes 1. Suppose \(f = h^{-1} \circ g \circ h \), then \(h \) is symmetric \(\iff h = \text{Id} \).
special cases:

(1) \(g(\frac{1}{2}) : \]

\[
\begin{align*}
0 & \quad \frac{1}{2} & \quad 1 \\
\hline
0 & \quad \frac{1}{2} & \quad \frac{3}{4} \\
\end{align*}
\]

\[
\text{limit } \lim_{x \to 0} \frac{g(x)}{x} = 2
\]

\[
\text{But Leb-invariant } \Rightarrow \text{ diverge.}
\]

(2) \(f: \]

\[
\begin{align*}
0 & \quad \frac{1}{2} & \quad 1 \\
1 & \quad 2 & \quad 2:1 \\
1 & \quad 2 & \quad 2:1 \\
\end{align*}
\]

\[
\text{same cutting + dense implies linear.}
\]

\[
\text{h is symmetric } \Rightarrow \text{ } m_1 = m_2
\]
part 3: symmetric at a point.

Sullivan's result: suppose f and g are two C^1 Lipschitz expanding endomorphisms of the same degree. Let h be the conjugacy between f and g, that is, $f \circ h = h \circ g$. Then

$$h \in C^1 \Leftrightarrow h \text{ is differentiable at one point with non-zero derivative.}$$

Jiang's result: f and g are two C^{1+x} expanding endomorphisms of the same degree for $0 < x < 1$. Let h be the conjugacy between f and g, that is, $f \circ h = h \circ g$. Then

$$h \in C^{1+x} \Leftrightarrow h \text{ is differentiable at one point with uniform bound.}$$

Question: is h symmetric?

For conjugacy map h, h is symmetric at a point $\Leftrightarrow h$ is symmetric.

Answer is No! (Hw)

$$f(1/2) = 8 \frac{\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2}}{1 - \frac{1}{2} \cdot 2}, \quad g(1/2) = 8^2$$

$$f = h \circ g \circ h^{-1}, \quad h \text{ is symmetric at } 1.$$

But h is not symmetric.