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We establish a reflection principle for the hyperbolic metric which has applications to 
geometric function theory. For instance. the reflection principle yields a number of 
monotonicity properties of the hyperbolic metric. The sharp form of Landau's Theorem is 
an immediate consequence of one of these monotonicity properties. The second main 
application is an interpretation of the reflection principle in terms of convexity relative to 
hyperbolic geometry. 
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1. INTRODUCTION 

This paper represents an extension of the work of Jerrgensen [7]. We 
employ differential-geometric techniques to obtain estimates for the 
hyperbolic metric on a Riemann surface. These inequalities have 
numerous applications to geometric function theory. Jerrgensen 
considered only regions on the Riemann sphere; his work is not 
sufficient for most of our uses. 

Our basic tool is a slight generalization of Ahlfors' Lemma [ I ]  which 
is necessary for our purposes. Pommerenke ([I I], [12]) has employed a 
similar generalization. An immediate consequence is a refinement of a 
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130 D. MINDA 

reflection principle for the hyperbolic metric that is due to Jmgensen 
[7]. The first byproduct of this reflection principle is a simple, geometric 
proof of certain monotonicity properties of the hyperbolic metric. In the 
special case of the twice punctured plane these monotonicity properties 
were established by Hempel [4]. who employed more complicated 
analytic techniques. Our version of Ahlfors' Lemma together with one of 
these monotonicity properties yields a short proof of the sharp form of 
Landau's Theorem. The original proofs of this precise form are due to 
Hempel [4] and Jenkins [6], independently, 

Next, we present a geometric interpretation of our reflection principle 
in terms of convexity relative to hyperbolic geometry. Jargensen [7] 
showed that if R is a hyperbolic plane region and A is any disk contained 
in R, then A is convex in the hyperbolic geometry on R. We obtain a 
generalization for Riemann surfaces. As a special instance we can show 
that if a plane region R is starlike with respect to a point u E cl(R) and A 
is any disk with center a, then R n  A is hyperbolically convcx. In 
particuiar, if R is a euclidean convex region, then R n  A is 
hyperbolically convex for any disk A with center in cl(R). This result i s  
best possible: if R is a half-plane and A does not have center in cl!R), 
then R n A is not hyperbo!ic~!!y convex. 

2. CONFORMAL METRICS AND RELATED CONCEPTS 

For more details on the topics of this section the reader should 
consult [lo]. 

Let R be a Riemann surface. A conformal metric on R is a nonnegative 
invariant form p(z)(dz(. If R is actually a region in C, then we sometimes 
consider just the density p(z) rather than the metric p(z)ldzl. An 
important example is the hypergolic metric in(z))dzl = )dzl/(l - )z12) on 
the unit disk D. 

On a Riemann surface R it generally makes no sense to speak of the 
value of a metric p(z)ldz) at a point a E R. However, the dichotomy of 
either p(a) = 0 or p(u) > 0 at the point a is independent of the choice of 
local coordinate at u. If a(z)ldzl is another metric on R which is positive 
at the point a, then the quotient p(z)ldzl/a(z)ldzl has a value at u which is 
independent of the local coordinate at a.  We generally write p/a(a) to 
denote the value of this quotient at the point u. We also write 
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A REFLECTION PRINCIPLE i 3 1 

p(z)(dz( < a(z)(dz(, or simply p < a ,  to indicate that the quotient p/o is 
bounded above by 1. 

The (Gausian) curvature at a of a metric p(z)idz\ which is positive and 
of class C 2  in a neighborhood of the point u is defined by 

The value of the right-hand side is independent of the local coordinate 
used at u. For example, the hyperbolic metric has constant 
curvature - 4. 

If p(z)ldzi is a positive. continuous metric on R,  then it induces a 
distance function on R that is given by 

;.;here :he infimum ic. h k e c  ever all locally rectifiable paths 6 on ii which 
connect [I and h. This distance function is compatible with the topology 
of K ,  A cGnnecting ci .! f- is ' -  ca~lcc! ---ll-> a - gc1dL3;L --- --... [relltive to the 

jl) j &  j if 

In general, a geodesic need not exist or be unique when it exists. For the 
hyperbolic metric i,,(z)ldzl the associated distance functioii is 

2 - q  
I+------- 

1 - Wz( 
di, (z, M') = t log 

1 - --- If:,",l 
The unique geodesics (h-geodesics) for the hyperbolic metric on iI3, are 
arcs of circles orthogonal to the unit circle. We often use the prefix "h" to 
stand for either "hyperbolic" or "hyperbolically". 

The pull-back of a metric via an analytic or anti-analytic function is 
another useful concept. Suppose f :  R -4 S is either an analytic mapping 
or an anti-analytic mapping of Riemann surfaces and o(z)ldzl is a metric 
on S. The pull-back of a(z)ldz( via f ;  which is denoted by f *(a(z)lrlzJ), is 
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132 D. MINDA 

the metric on R defined as follows. Initially, we assume R,  S are plane 
regions. I f f  is analytic, then 

When 1' is anti-analytic. 

Recall that 

If R, S are Riemann surfaces, then similar definit~ons hold, but ~t 1s 
necessary to work in terms of local coordinates. If aiz)lu'zl is a positive 
C' metric on S and f is locally injective, then 

In particular, Gaussian curvature is invariant under both conformal and 
anticonformal mappings. If y is any path on R, then we have the change 
of variable formula 

1, .f * ( d z W l )  = o(z)!dz! .  S I.;. 
Finally, iff: R + S and g: S + Tare analytic or anti-analytic functions, 
then it is straightforward to verify that 

A metric y(z))dzl on R is called invariant under a conformal or anti- 
conformal automorphism f :  R + R if f*(p(z)ldzl) = p(z)ldzl. In this 
case the associated distance function is also invariant, that is, 
d(  f (u) ,  f (b ) )  = d(a, h )  for all a, b E R. For instance, the hyperbolic metric 
on D is invariant under the full group Aut(D) of conformal 
automorphisms of the disk. 

A Riemann surface R is called hyperbolic if its universal covering 
surface is conformally equivalent to the unit disk. This is equivalent to 
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A REFLECTION PRINCIPLE 133 

the existence of an analytic universal covering projection .f: D + Q 
of the disk onto R. The set of all such coverings is given by 
.( f ' ,  T: T E A u ~ ( D ) ~ .  The only Riemann surfaces which are not 
hyperbolic are those conformally equivalent to C (01, C, P or a torus. 
For a hyperbolic plane region R a covering is uniquely determined by 
specifying f ( 0 )  and arg f'(0). For a hyperbolic Riemann surface R there 
is a unique, positive, real-analytic metric ibn(z)ldzl on R such that 
.f *(i,(z))dzJ) = i,,(z)ldzl. This metric is independent of the choice of the 
covering projection because iL,,(z)ldzJ is invariant under Aut(D). If t2 is a 
plane region, then the hyperbolic metric is determined from 

In particular, if f'(0) = a, then i,,(u) = ljl.ff(0)l. 
The hyperbolic metric on R has constant curvature -4 and is 

invariant under both conformal and anti-wnformal mappings. In 
par!icular. i t  is invariant uilder the group Autl-cZ! of conformal 
automorphisms of R. Let dn denote the distance function on Q 1 hat is 
induced by ;.,(z)ldz!. A geodesic relative to the hyperbolic metric will be 
termed an h-geodesic. Fcr any a, h E Q an  h-geodesic exists but it may 
not be unique if Q is not simply connected. In any case, an h-geodesic y 
on R is always the image of an h-geodesic .1; in D under a universal 
covering projection. For example, if W = {z: Im(z) > 0) is the upper 
half-plane, then &(z)ldz( = $ Im(z) and h-geodesics are circular arcs and 
line segments orthogonal to the real axis R. 

3. A VERSION OF THE AHLFORS' L E M M A  

We require a slight extension of the usual form of the Ahlfors' Lemma. 
Pommerenke ([I 11, [12]) established a similar result but in function 
theoretic terms rather than the differential-geometric language that is 
suitable for our purposes. 

THEOREM 1 Let R be a hyperbolic Riernann surface. Suppose that 
p(z)JdzJ is an upper sernicontinuous, nonnegative metric on R such that for 
any a E R either p/i,,(a) 6 1 or else p(a) > 0 and p(z)ldzl has a supporting 
metric on (I neighborhood of a. Then pli, 6 1. 

Remarks A metric p,(z)ldzl is called a supporting metric for y(z)(dz( at 
the point LZ if pa(z)ldzl is defined, positive and of class C2 in a 
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134 D M I N D A  

neighborhood L: of a. has curvature at most - 4 and p p', 3 ! in C with 
equality at  the point ( 1 .  The usual form of the Ahlfors' Lemma [ l ]  
requires the existence of a supporting metric at ebery point ti such that 
p(u)  : 0. so Theorem 1 is a generalization. 

P C '  First. we assume :he ;.alidity of the theorem for the  ini it disk 
D. Let J': D i'- R be an ana!ytic universa! covering projection. Then 
a(:)ilzi = / ' * (p ( : )~ I : i )  is an upper semiiontinuous. nonnegative metric 
on D. Since /. (:)lrl:l = ,f'*(i,(:) irlzl). it follows that p 'i.,,(a) -< ! implies 
a, i ( h )  < 1 for all h E f '  ' (a). Similarly, ifp,(:)~clsl is a supporting metric 
for p(z)ldz! at a ,  then o,,(;)ldzl = , f*(p,(:)!rlz)  is a supporting metric for 
a(z)lrlzl at each point b~ f ' - ' ( ( I ) .  This is true because the invariance of 
curvature under a pull-back implies that a , ( : ) l k  has curbature at  most 
-4  and because p p ,  3 1 near L I  with equality at u implies da,, 3 1 in a 
neighborhood of each h ~ j ' ( r ~ )  with equality a t  h.  Consequently, 
a(:)irk satisfies the hypotheses of the theorem on D. so Fve deduce that 
a ,  /., r I .  This yieids o ~ / . ~  s I .  

A11 th?t  rorn,l;nc is ti\ act-hlirh t h n  thenram in :f?, sprci,:! !;v+.sc 9 = 
.1. . I  .... . - I l l s  l... .l L \ ,  u ..,, < % . , , 7 > !  t s r -  % Z , . . . , . L ! +  - -  - .  

I n  fact, i t  is .sufTicient 10 show that for fixed r . ~  (6, 1)  

holds when lrl < r. The general result follows by letting r increase to 1. 
Since 1 %  = log i, - l ogp  is lower semicontinuous and tends to + s 
when / z /  - r,  the function r ,  attains a minimum value at a point tr with 
/ ( ; I  < r .  If :he point ii is such that p(a) < i . (a )  : ;:,((I),  :hen i.(ci) > O and 
so p(r)  < i.,(z) for < r. Otherwise, p(z)ldzI has a supporting metric at (1 

and the proof is the same as Ahlfors' original [I]. 
The next result will be used to demonstrate the sharpness of some 

subsequent theorems that are obtained from our version of Ahlfors' 
Lemma. 

THEOREM 2 Suppose R is u Riematlrl surfuce utld 0, A are hyperbolic 
subsurfaces. I f  a E R n A atld iL,/iL, ,< 1 in a neighhorlzood o f  a with 
eqzrulitj~ at a ,  thetl A = R. 

Proof Take f :  D + R and g: D -+ A to be analytic universal 
covering projections with f '(0) = u = g(0) .  Let y - ' denote the branch of 
the inverse of g that is defined in a neighborhood of a and satisfies 
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A REFLECTION PRINCIPLE 135 

g- '(a) = 0. Then h = g-I 0 f is defined in a small disk D(E) about the 
origin and satisfies h(0) = 0 and (h'(O)( = 1.  The latter is true since 
iLA/ib,(u) = 1.  From g . 17 = f' we have on D(E) 

If y is the radial path from 0 to z E D ( E ) ,  then 

dd03 z) = 1, M l ) / d l /  2 1, h*(&(l)p@ 

= i ,(i)ldij  d &(O. &)). 

This yields Ih(z)) d lzl for z E D(E) .  SO h maps D(E) into itself. Schwarz' 
Lemma applied to h on D(E) gives Ih1(O)1 ,< 1 with equality if and only if 
k is a rotation about the origin. Since lh'(0)I = 1, we conclude thar 

= $HZ for some P C ?  Then f(z) = y!riOz) for :EB(E) and this 
identity must continue to hold on D. In particular, Q = 
f(D) = g(D) = A. 

4. A REFLECTION PRINCIPLE FOR THE 
HYPERBOLIC METRIC 

We begin by establishing certain notation that will be in force 
throughout this section. Let R be a bordered Riemann surface, R the 
interior, dR the nonempty border oriented so that R lies to the left and 8 
the Schottky double of R across aR [2, p. 1191. Suppose j: l?-+ l? is the 
associated anticonformal involution that fixes aR pointwise. A 
subsurface of fi is called symmetric about ilR provided j(Q) = 52. If R is 
hyperbolic and symmetric about dR, then it is straightforward to verify 
that the hyperbolic metric on Q is also symmetric; that is, 
j*(L,(z)ldzl) = A,(z)ldzJ. In any case, j*(A,(z)ldz)) = A,*(z)ldzl is the 
hyperbolic metric on R* = j(Q), the reflection of Q about dR. 

THEOREM 3 Let R be a hyperbolic subsurface of R such that 
R n aR # @ and j(Q\ R)  c R, or equivalently, R\R c R*. Then 
A,*/&(a) Q 1 for a E R \  R with equality if and only if R is symmetric 
about SR. 
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136 D. MINDA 

Proof' We have already noted that equality holds if R is symmetric 
about ?R. Define a metric p(z)ldz( on R by 

The second portion of this definition makes sense because R\ R c R* by 
hypothesis. in order to conclude that p(:)ldzJ 1s a continuous metric on 
R,  we must show that the two parts of the definition are the same on 
R n c'K. From j j(z) = z we obtain ( f i / ?3 ) (~ (~ ) ) (?>3z ) ( z )  = 1 .  This 
yields J(gj/('f)(z)I = 1 at any fixed point of j ;  in particular, this holds at 
each point of R n 3R. This demonstrates that p(-.)(dzl is well-defined and 
continuous on R.  Trivially. p / i ,  ,< 1 on R n  3R and p(z)(d;l has 
constant curvature -4 on R\c7R, SO P(z) (d~I  is I ~ S  own supporting metric 
at each point of R\,?R. Theorem 1 implies that pii,, < I ,  which produces 
the inequality of the theorem for a €  R\R. If equality holds at a point 
u E R',R. then we habc in*  ,in = p,;.n < 1 in a rlzigllho~ 11oc)d of 11 with 
equality at ti and Theorem 2 imp!ies R = R*. 

Kenlark Jm-gensen [7] established this theorem in the special case in 
which R is an open half-plane in C, ?R is thc circle on the Rlernann 
sphere that hounds R ,  k = P and ii c R. in this paper our applications 
of Theorem 3 will generally be to regions on the sphere but we will not 
always have R c R,  so J~rgensen's version of Theorem 3 does not suffice 
for our purposes. Also, J~rgensen used the boundary behavior of the 
hyperbolic metric in his proof, while this issue does not even enter into 
our proof. 

COROLLARY I (i)/?n)(l,*/&)(b) 3 0 for b E R n ?R with strict 
inequality unless R is syrnmrtric about dR, where ?/?n denotes 
difi.renriation in rhr direction of' rhr inward-pointing normal on 3 R .  

Proof Fix h E R n 3R. Because i,,*/i., d 1 on R\R with equality at 
b, it is elementary that (?/di~)(&*/&)(b) 3 0. J@rgensen [ I  0, Lemma 1.21 
showed that if i,,*/i,, < I in a disk with equality at a boundary point, 
then ?/?r log(i,,./i,,) > 0 at this boundary point, where ?/?r denotes 
differentiation in the radial direction away from the center of the disk. 
By applying this result to a small disk in R\ R that is tangent to iiR at b, 
we conclude that (?/i"n)(R,*ll,)(b) > 0 when R is not symmetric about 
SR. This is essentially an instance of a strong form of the maximum 
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A R E F L E C T I O N  PRINCIPLE 137 

principle for linear elliptic partial differential equations that is due to 
Hopf ( [ 5 ] .  [13, Chapter 21). 

Proof' Let ;- be an h-geodesic on R from ( I  to h. Take 7 ,  to be the 
subarc of y from o to the first point of intersection of 7 with c'R and 7 ,  to 
be the remainder, if any, of ;. Then 7 = y ,  + y ,  and 7 ,  c R\R so 

becausej ;., t y 2  IS a path o n  R from j ( u )  to b. If  R is not symmetric 
about SR, then E.,l-:i, < I on ;::,;R and strict inequality holds in the 
above chain of inequalities. 

Remurk A special case of Corollary 2 for simply connected regions is 
due to Ullman 1141 and Jmgensen [7, Theorem 33 extended it to 
multiply connected regions. 

We shall most often apply the results of this section to the following 
situation. will denote a circle on the Riemann sphere, R will be one of 
the open disks on P determined by r a n d  R = R u T: In this case we can 
regard P itself as the Schottky double of R across SR = r and j is 
ordinary reflection in the circle 1: If R n # 0 and j (Q\  R )  c 0. then 

for 2 E R \  R with strict inequality unless R is symmetric about T. If r is a 
straight line, then JPj/(7i) = I .  Also, for 2 E C2 n L 
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138 D. MINDA 

with strict inequality unless R is symmetric about T. When l- is a straight 
line, this simplifies to 

5. MONOTONICITY PROPERTIES OF THE HYPER- 
BOLIC METRIC AND LANDAU'S THEOREM 

Hempel [4] established several monotonicity properties for the 
hyperbolic metric of @ \  (0, 1 by making use of a maximum principle for 
for partial differential equations together with boundary estimates for 
the density of the hyperbolic metric that are obtained by using the 
classical theory of the elliptic modular function. We present simple, 
geometric proofs of various munotc~nicity properlies of the hyperbolic 
metric which cmtain those of Hempe! as special instances. As one 
application of his results. Hempcl derived a sharp form of Landau's 
theorem. An independent proof was given by Jenklns [h], who 
employed ideas from the topological theory of functions. We give a 
direct proof of the explicit expression for the bound in Landau's 
Theorem. 

THEOREM 4 Let R be a hyperbolic region in @. 

( i )  If (z: Im(z) > 0) c R, then i3AQ/i3y < 0 ,for Im(z) > 0. 
(ii) 11' dR c [0, XI], then ii;i,/& < O for O < tl < rc with the reverse 

inequality for - rc < 0 < 0. 
(iii) I f  ( z :  0 < Iz - a1 < p )  c R and z = a + reit', then 

3A,/3r > - (An/r) for r E (0, p) so that ri,,(a + rei") is strictly 
increusiny on (0, p) for each $xed 8 .  

Proof' (i) Fix yo > 0 and let R = I:: Im(z) b yo:. Since R 3 R, 
Corollary 1 of Theorem 3 gives di,,/ily < 0. Strict inequality must hold 
since symmetry about ?R would give R = @ and @ is not hyperbolic. 

(ii) Because R is symmetric about the real axis, &(i) = A,(z). 
Therefore, it sufices to establish ?R,/30 < 0 for 0 < 8 < rc since then the 
reverse inequality for - n < 0 < 0 follows automatically. Fix 8, E (0, n). 
Let l- be the line through Oand eiOO and R the half-plane determined by l- 
which contains - 1 .  If R = R (J T; then R =, R\,{o) =, R and again 
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Corollary 1 of Theorem 3 produces ?i.,/?O < 0. Equality would imply R 
is symmetric about r and so R 3 C\{O) which is impossible. 

(iii) There is no - harm in assuming that u = 0. Fix r ,  E (0, p )  and let 
r = (;: /;I = r , j ,  R = {:: 0 < jz/ < r , ) .  Then I ( = )  = r i / f  is reflection in 
r = i R  a i d  clearly j(fil\ ,R) c !? c Q. Now; Corollary 1 of Theorem 3 
yields 

for /z/ = r,. This is equivalent to the inequality in part (iii) of the 
theorem. Equality would imply !2 3 @ \ ( O i ,  a contradiction. 

Remurks From part (ii) of Theorem 4 we conclude that ,?,(rei" is 
strictly decreasing on (0. n) and strictly increasing on (-  rc, 0). This is a 
special case of a symmetry property of the hyperbolic metric due to 
Weitsmm [ I  51 I n  particular. this implies that on each circle about the 
origin the density of the hyperbolic me t r i~  &,, (;)lu'ri an L;;'3, ! 
attains i i ~  xxiinir:~um i-al:i.= on :ht neg:?tive rra! axis, a resuit due iu 

Lehto, Virtanen and Vaisaia [ X I .  For thc unit circle this wtis 
rediscovered 'ny Jenkins L G j .  Sei 

([4], [ h ] ) ;  I,,,, ( - 1 ) is the minimum value of I,,, , on the unit circle and 
- 1 is the unique point at which the minimum is attained. 

with .stric.t inrquulity unless z = - 1. 

Prooj Define a continuous metrix p(z)ldzl on @\,{0) by piz) = 

1/2/zl(lloglz(l + K). For /zj = 1, p(z) = 1/2K = A,,,(- 1)  < i,,,,(z) with 
strict inequality for z # - 1. Next, we show that p(z)ldzl has curvature 
-4 off the unit circle. This can be accomplished by direct calculation, 
but here is an easier method that also yields additional information. If 
r = r K  > I ,  then for O <  I=/ < 1 
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is the density of the hyperbolic metric on the punctured disk D'(r) = ( z :  
0 < 111 < r). Thus, p(z)ldzl obviously has curvature -4 for 0 < 121 < 1. 
If h(z) = I/,-, then direct calculation gives h*(p(z)ldzl) = p(z)ldzl. 
Because curvature is invariant under a conformal mapping. we may 
conclude that p(z)(dz( also has curvature - 4 for Izl > 1. Therefore. 
p(z)ldzI is its own supporting metric off the unit circle. Theorem I gives 
p(:) < i,,,, ( 2 )  for z E C: (0. I I. We have already observed that strict 
inequality holds for IzI = I ,  z # - I .  It remains to show that strict 
inequality holds off the unit circle. If equality held at a, 0 < la1 < 1, then 
iL,.(,,(z) = p ( z )  6 iL,,,(z) for z near a with equality at a and Theorem 2 
would imply \ O l } = D ( r ) ,  a contradiction. From 
h*(p(z)ld:l) = p(z)ldzl and h*(i.,,, (z)ldzl) = R,,, (z)ldzl (because k is a 
conformal automorphism of @ \  (0,1', ),we know that equality at a would 
also result in equality at Ila. Hence, strict inequality also holds for 
IzI > 1. 

COROLLARY (Landau's Theorem) I f '  ,I' is holomorplzic~ in D und 
j'(2,) c E',[O, :;, 1hen .for Z k 2  

Equality holds at a E D fund only i f ' f  ib u holomorphic. uni~wrsul cowriny 
of D onto @\{O, 1: with ,f(a) = - 1. 

Proof The principle of hyperbolic metric gives 

with equality if and only if j' is a holomorphic covering of D onto 
C\(O, I ) .  Theorem 5 gives 

Necessary and sufficient for equality at z = u where f'(a) # 0 is that 
f(a) = - 1. By combining these two inequalities, we obtain the desired 
result. 

6. HYPERBOLIC CONVEXITY 

We now give an interpretation of Theorem 3 in terms of convexity 
relative to hyperbolic geometry. Suppose Q is a hyperbolic Riemann 
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A REFLECTION PRINCIPLE 141 

surface and E a subset of R. E is called hj~prrbolicully convex. or h-conws 
for short. if for any pair ' 1 ,  h of distinct points in E every h-geodesic 
joining (1 and h also lies in E. Recall that an Ir-geodesic need not be 
unique if R is not simply connected. Let R,  R ,  ?R, R and 1 be as in 
Section 4. 

THEOREM 6 LLT R he a hyperhnlic . s~~h.s~~rfL~ce  qf' R S U C I I  t h u ~  
Cl n ?R # 0 and j (RhR)  c R. T l m  R n R is 1212 ~-COIZL.PX S U ~ S P ~  01' R. 

Proof' First, suppose that R is symmetric about (7R. We wish to show 
that any h-geodesic y that joins u,  h E R n R must remain in R n R. Let 
f :  ED -+ R be an analytic universal covering projection such that 
f ' ( 0 )  E R n R and j'maps the positive direction along the real axis at the 
origin into the positive direction along ,?R at j ' (0) .  Then j ( . f (z ) )  has the 
same properties, so f ( z )  - j ( f ' ( 5 ) ) .  Then ,f' maps (-  1,  1 )  onto a single 
contour of ?R.  !'maps !?3+ - I - E  D: Im!:) > 01 onto R n Rand EL 3v = '2 - 
{ Z E  D: Irn!~! 0) ontco Q n (R".  R ) .  Fix ci E D + with , f ' ( i i )  = LI and let 

. . 
be the unique lift olg vla j wiih iiiitiai poini ii. Then -; is ~ ! i  i ' i - g ~ d ~ ~ : c  :i: 

D connecting ii E D' to a point 6that lies over h.  Because i ( B  j c R '  R, 
we must have 6~ D+.  Since D T  is Ir-convex, it foliows that 7 c E ' and  
soy  = f o * , c R n  R. 

Next, assume that R is not symmetric about ?R.  The initial step is to 
show that any h-geodesic y connecting a ,  b E R n R must lie in R n R. 
We are assuming that 

&(a, b )  = r i&)/&/. J, 
Because .; is a compact regular analytic arc, 7 meets iiR in only finitely 
many points; otherwise, y would be contained in some contour of 2R 
[9], which is nonsensical. If 7 did not remain in L2 n R,  then y would 
contain a subarc 6 such that the endpoints of 6 lie on R n dR and 
otherwise h is contained in R\  R. Then j 2 6 has the same endpoints as 6 
and since R is not symmetric about dR, 

L i , ( z ) id i /  = j * ( i , (z) /dzJ)  < In (z ) ldz \ .  

Consequently, if we would replace the subarc 6 of y by j 0 6, then we 
would obtain a path on R joining u and b with strictly smaller hyperbolic 
length than g. This is impossible since y is an h-geodesic. Therefore, 
y c C l n R .  
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142 D. MINDA 

All that remains is to show that 1, does not meet ?R. Let f :  D -+ R be 
an analytic universal covering projection with f ( 0 )  = a .  The group G of 
cover transformations consists of all conformal automorphisms T of D 
such that f '  T = f :  Let A denote the Dirichlet fundamental region for G 
with center 0: that is, A = (:: 11- (0, :) < d.:(T(O), :) for all T E G, T # I ) .  
The covering projection f' is injective on A. Let 7 be the lift of ;- with 
initial point 0. The terminal point 6 of ;' lies over b and 6~ cl(A). By 
moving h slightly towards u along 7 ,  i f  necessary, we may assume 6~ A. 
Since 7 is an k-geodesic, so is $. Thus, l; is a radial line segment. For c 
near h let 6 be an h-geodesic from a to c .  We know that S c R n R .  Let $ 
be the lift with initial point 0. Then $is a radial segment from 0 to I E A 
which lies over c. Hence, there is a small closed disk about r such  that 
any radial segment from 0 to a point of this disk projects to an h-geodesic 
in R n R.  Let K be the closed convex hull of the set consisting of 0 
together with the closed disk about 6. Then f ( K )  c R n R ,  so the open 
mapping theorem gives ,f'(int(K)) c R n R. We conclude that 
;! c R R,  so R R is h-convex 

Example 2 Let R = { z :  p -  ' < lzl < p>, p > 1, R = { z :  Im(z) 6 d )  
and j denote reflection in the horizontal line Im(z) = d. If 
d 3 (1/2)(p + p- ' )  > I ,  then R n R is h-convex sincej(R\R) c R. Note 
that R n R is doubly connected, f 1 E R n R and both arcs of the unit 
circle joining f 1 are h-geodesics. 

Jsrgensen [7] remarked that an open disk or half-plane contained in a 
hyperbolic region on P is always h-convex. Flinn [3] showed that the 
only open sets E in P with the property that E is h-convex in every 
simply connected region containing E were disks and half-planes. 
Theorem 6 lets us conclude that certain sets besides disks and half- 
planes are sometimes hconvex. Examples 1 and 2 illustrate this. We 
now offer a simple geometric criterion for hconvexity which includes 
disks contained in the region as a special case. A region R is said to be 
starlike with respect to c E cl(R) provided that for every Z E  R the half- 
open line segment (c. z] belongs to R. 

THEOREM 7 Suppose R is a hyperbolic region in Q' and R is starlike ~l i th  
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A REFLECTION PRINCIPLE 143 

respect to c E cl(R). Then R n (2: I: - CI < r ]  is h-convex in R jor unj. 
r > 0. 

Proof' Let r = [ z :  1: - C( = r ) ,  R = ( z :  12 - c/ < ri and j denote 
reflection in T: It is sufficient to show that j ( R \ R )  c SZ. Consider any 
; E R\  R .  By hypothesis the segment (c.  I] lies in R. Set ( = (c, :] n T. 
Then ( c ,  (1 c R and the reflection j ( z )  of 2 lies on (c ,  (1 because j maps 
each ray emanating from c onto itself, but j  interchanges the interior and 
exterior of 1 

COROLLARY I Suppose f :  D - R is a conformul mapping with f (0) = 0 
and R i s  sturlike wirh respect to the origin. Then for any r > 0 the set 
,f'-'(R n {z: /zl < r ) )  is h-cxmex in D. In purticulur, 
f -'(R n (z: lzl < r ) )  is starlike wirh respect to the origin. 

Proof' The theorem insures us that R n {z: (z( < r )  is h-convex in R. 
Besausc h-convexity 1s a conformal invariant, 1'-' (R ( z :  /:I < r )  ) is h- 
convex in D. S i n c ~  line scgments ir. D are h-gelzdesicsj any set B 
which contains the origin and is h-convex is starlike wlth respcct to thc 
origin. 

COROLLARY 2 Let R f Q. be a convex rrgion in C. TIieii f ir  a";, 
c E cl(SZ) n C and any r > 0, R n {z: lz - cl < r )  is h-convex in R. 

Proqf Since R is convex, it is starlike with respect to every point in 
cl(R) n C. 

Remark In the following sense Corollary 2 is best possible. If W is the 
upper half-plane, then the h-geodesics are circles and lines that are 
orthogonal to the real axis. Of course, circles orthogonal to the real axis 
have their center on the real axis. Simple geometric considerations show 
that if Im(c) < 0, then W n { z :  ( z  - c( < r )  is not h-convex in W .  
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