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We establish a reflection principle for the hyperbolic metric which has applications to
geometric function theory. For instance, the reflection principle yields a number of
monotonicity properties of the hyperbolic metric. The sharp form of Landau’s Theorem is
an immediate consequence of one of these monotonicity properties. The second main
application is an interpretation of the reflection principle in terms of convexity relative to
hyperbolic geomeiry.
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1. INTRODUCTION

This paper represents an extension of the work of Jorgensen [7]. We
employ differential-geometric techniques to obtain estimates for the
hyperbolic metric on a Riemann surface. These inequalities have
numerous applications to geometric function theory. Jorgensen
considered only regions on the Riemann sphere: his work is not
sufficient for most of our uses.

Our basic tool is a slight generalization of Ahlfors® Lemma [ 1] which
is necessary for our purposes. Pommerenke ([11], [ 12]) has employed a
similar generalization. An immediate conscquence is a refinement of a
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reflection principle for the hyperbolic metric that is due to Jorgensen
[7]. The first byproduct of this reflection principle is a simple, geometric
proof of certain monotonicity properties of the hyperbolic metric. In the
special case of the twice punctured plane these monotonicity properties
were established by Hempel [4]. who employed more complicated
analytic techniques. Our version of Ahlfors’ Lemma together with one of
these monotonicity properties yields a short proof of the sharp form of
Landau’s Theorem. The original proofs of this precise form are due to
Hempel [4] and Jenkins [6], independently,

Next, we present a geometric interpretation of our reflection principle
in terms of convexity relative to hyperbolic geometry. Jorgensen [7]
showed that if Q is a hyperbolic plane region and A is any disk contained
in Q, then A is convex in the hyperbolic geometry on Q. We obtain a
generalization for Riemann surfaces. As a special instance we can show
that if a plane region Q is starlike with respect to a point a € cl(Q) and A
is any disk with center a, then QA is hyperbolically convex. In
particular, if Q is a euclidean convex region, then QN A is
hyperbolically convex for any disk A with center in cl(Q). This result is
best possible: if Q is a half-plane and A does not have center in cl(Q),
then Q N A is not hyperbolically convex.

2. CONFORMAL METRICS AND RELATED CONCEPTS

For more detai
consult [10].

Let R be a Riemann surface. A conformal metric on R is a nonnegative
invariant form p(z)|dz|. If R is actually a region in C, then we sometimes
consider just the density p(z) rather than the metric p(z)|dz|. An
important example is the hypergolic metric 4, (z)|dz| = |dz|/(1 — |z|*) on
the unit disk D.

On a Riemann surface R it generally makes no sense to speak of the
value of a metric p(z)|dz| at a point a € R. However, the dichotomy of
either p(a) = 0 or p(a) > 0 at the point a is independent of the choice of
local coordinate at a. If 6(z)|dz| is another metric on R which is positive
at the point a, then the quotient p(z)|dz|/c(z)|dz| has a value at a which is
independent of the local coordinate at a. We generally write p/a(a) to
denote the value of this quotient at the point «. We also write

his section the reader should
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p(z)ldz| < o(z)ldz|, or simply p < g, to indicate that the quotient p/o is
bounded above by 1.

The (Gaussian) curvature at a of a metric p(z)|dz} which is positive and
of class C? in a neighborhood of the point « is defined by

Alog 0(2)}

ca, plz)dz]) = ——— .
kla. p(z)dz]) 2@ |

The value of the right-hand side 1s independent of the local coordinate
used at a. For example, the hyperbolic metric has constant
curvature —4.

If p(z)ldz| is a positive, continuous metric on R, then it induces a
distance function on R that is given by

d(a,b) = inf { pl2)dz],

PRy

where the infimum is taken over all locally rectifiable paths ¢ on R which
connect ¢ and b, This distance function is compatible with the topology
of R. A path y connecting g and b is called a geodesic (relative to the

.
metric p(z)|dzi) if

d(a,b) = J p(2)ldz}.

In general, a geodesic need not exist or be unique when it exists. For the
hyperbolic metric 4y(z)]dz| the associated distance function is

Z“W”

L+ 1 — wz|

dp(z, M’)z%log T —w
1 —

1 —wz

The unique geodesics (h-geodesics) for the hyperbolic metric on D are
arcs of circles orthogonal to the unit circle. We often use the prefix “4” to
stand for either “hyperbolic™ or “hyperbolically™.

The pull-back of a metric via an analytic or anti-analytic function is
another useful concept. Suppose f: R— S is either an analytic mapping
or an anti-analytic mapping of Riemann surfaces and a(z)|dz| is a metric
on S. The puli-back of a(z)|dz| via f, which is denoted by f*(o(z)|dz}), is
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the metric on R defined as follows. Initially, we assume R, S are plane
regions. If f is analytic, then

: of
S*¥o(2)dz]) = a(f(2)) o lld z]
= o(fDIf"@)ld=].
When [ is anti-analytic,
S*(a(2)ldz]) = a(f(2)) z)|ldzl.

Recall that

(a . ) e 1/e 5>
— — I —==l—+t1—]).
ox o ay)’ oz 2\0x 0y,

If R S are Riemann 'rfdceo the tlar definit hold. bu

AL AN, iGiiin ou taén simuar ons nuiu, Uut ll is
necessary to work in terms of local coordinates. If a(z)|dz| is a positive
C? metric on S and f is locally injective, then

Kk(a, f*(a(2)ldz])) = k(fla)), a(z)|dz=]).

In particular, Gaussian curvature is invariant under both conformal and
anti-conformal mappings. If y is any path on R, then we have the change
of variable formula

rf*(a(z)ldz!) = f a(z)|dz].
Jy Jry

Finally, if f: R— S and g: S — T are analytic or anti-analytic functions,

then it is straightforward to verify that

(gofV*=f*g*

A metric p(z)|dz| on R is called invariant under a conformal or anti-
conformal automorphism f: R— R if f*(p(z)|dz|) = p(z)|dz|. In this
case the associated distance function is also invariant, that is,
d(f(a), f(b)) = d(a,b)forall a, b e R. Forinstance, the hyperbolic metric
on D is invariant under the full group Aut(D) of conformal
automorphisms of the disk.

A Riemann surface Q is called hyperbolic if its universal covering
surface is conformally equivalent to the unit disk. This is equivalent to
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the existence of an analytic universal covering projection f:D —Q
of the disk onto Q. The set of all such coverings is given by
{f«T: Te Aut(D)!. The only Riemann surfaces which are not
hyperbolic are those conformally equivalent to C' {0}, C, I or a torus.
For a hyperbolic plane region Q a covering is uniquely determined by
specifying f(0) and arg f”(0). For a hyperbolic Riemann surface Q there
is a unique, positive, real-analytic metric /g(z)|dz] on Q such that
f*(ha(z)|dz]) = 42 (z)|dz|. This metric is independent of the choice of the
covering projection because 4p (z)|dz| is invariant under Aut(D). IfQisa
plane region, then the hyperbolic metric is determined from

RS S
Fal FENS G = | —

In particular, if f(0) = a, then Ag(a) = 1/1/°(0)l.

The hyperbolic metric on Q has constant curvature —4 and is
invariant under both conformal and anti-conformal mappings. In
particular. it is invariant under the group Aut(Q) of conformal
automorphisms of Q. Let dg denote the distance function on & that is
induced by /q{z)ldz]. A geodesic relative to the hyperbolic metric will be
termed an h-geodesic. For any a,he Q an h-geodesic cxists but it may
not be unique if Q is not simply connected. In any case, an h-geodesic y
on R is always the image of an h-geodesic 7 in D under a universal
covering projection. For example, if H = {z: Im(z) > O} is the upper
half-plane, then A; (z)]dz\ — L Im(z) and h-geodesics are circular arcs and

line segments orthogonal to the real axis R.

3. A VERSION OF THE AHLFORS’ LEMMA

We require a slight extension of the usual form of the Ahlfors’ Lemma.
Pommerenke ([11], [12]) established a similar result but in function
theoretic terms rather than the differential-geometric language that is

suitable for our purposes.

TueoreM 1 Let Q be a hyperbolic Riemann surface. Suppose that
p(z)|dz| is an upper semicontinuous, nonnegative metric on Q such that for
any a € Q either p/igla) < 1 or else p(a) > 0and p(z)|dz| has a supporting
metric on a neighborhood of a. Then p/iq < 1.

Remarks A metric p,(z)|dz| is called a supporting metric for p(z)|dz| at
the point a if p,(z)ldz| is defined, positive and of class C? in a
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neighborhood U of a. has curvature at most —4and p/p, = lin U with
equality at the point «. The usual form of the Ahlfors’ Lemma [1]
requires the existence of a supporting metric at every point ¢ such that
pta) > 0.s0 Theorem [ is a generalization.

Proof First, we assume the validity of the theorem for the unit disk
. Let /11— Q be an analytic universal covering projection. Then
o(2)|dz| = _/'*( )(z)]d=]) is an uppel semicontinuous, nonnegative metric
on . Since 4 .{z)ldz] = / (z)]dz]). it follows t}xat,;"/'ﬂ(a) < | implies
cis by <1 for allhe f~ (a Slmllarly,lfp (z)jd= 4193 supporting metric
for p(z)|dz} at a, then o ,(2)|dz] = [*(p,(z)ldz]) is a supporting metric for

(z)|dz] at each point be ™ '(a). This is true because the invariance of
curmture under a pull back implies that ¢,(z)|dz| has curvature at most
—4 and because p/p, = 1 near u with equahty ataimplies g/g, > lina
neighborhood of each he f~'(a) with equality at b. Consequently,
o(z)|dz] satisfies the hypothescs of the theorem on D. so we deduce that
Gi/-~ %= 1. This vields p/a, < 1.

All that remains is to establish the thearem in r',,e qm,;.;al case Q — T

holds when |z| < r. The general result follows by letting r increase to 1.
Since v =log /, — log p is lower semicontinuous and tends to + oo
when [z] — r, the function v attains a minimum value at a point ¢ with
la] < r. If the point a is such that pla) < 2.(a) < A,{a), then v{a) > Cand
s0 p(z) < 4,(z)for|z| < r. Otherwise, p(z) |d‘.| has a supportmg metric at a
and the proof is the same as Ahlfors’ original [1}.

The next result will be used to demonstrate the sharpness of some
subsequent theorems that are obtained from our version of Ahlfors’
Lemma.

THEOREM 2 Suppose R is a Riemann surface and Q, A are hyperbolic
subsurfaces. If ae QN A and i,/iq < 1 in a neighborhood of a with
equality at a, then A = Q.

Proof Take f:D—Q and ¢g:D— A to be analytic universal
covering projections with f(0) = a = ¢(0). Let ¢ ! denote the branch of
the inverse of g that is defined in a neighborhood of a and satisfies
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g Ya)=0.Then h = g~ '« fis defined in a small disk D(¢) about the
origin and satisfies h(0) = 0 and \h’(O)\ — 1. The latter is true since
saligla) = 1. From g- h = f we have on D(¢)

in(2)|dz| = [*(ralz)|dz)) = F*0a2)]d2])
= h*(g*(2,(2)]d2])) = h* (. (2)|dz))-

If y is the radial path from O to =€ D(e), then

d»(0,2) = J }LM(C)MCI z J h*(;vsn((:)ldCl)

7

= f S (Q)]dC] = d=(0, h(z)).
hy

This yields |h(z)| < |z| for z€ D(e). so h maps D(e) into itself. Schwarz’
Lemma applied to h on D(e) gives [1'(0)] < 1 with equality if and only if

h is a rotation about the origin. Since ih'((‘y)[ = 1, we conclude that

e 0e® Then f(z)=gle?z) for z€ D(¢) and this

h(z) = "z for som
In particular, Q=

identity must continue to hold on D.
f(D) =g(@)=A.

4. A REFLECTION PRINCIPLE FOR THE
HYPERBOLIC METRIC

We begin by establishing certain notation that
throughout this section. Let R be a bordered Riemann surface, R the
interior, OR the nonempty border oriented so that R lies to the left and R
the Schottky double of R across (R [2, p- 119]. Suppose j: R — Ris the
associated anticonformal involution that fixes OR pointwise. A
subsurface Q of R is called symmetric about AR provided j(Q) = Q.IfQis
hyperbolic and symmetric about R, then it is straightforward to verify
that the hyperbolic metric on Q is also symmetric; that is,
j*(Aa(2)ldz]) = Aq(z)ldz|. In any case, j*(Aal2)ldzl) = Ag+(z)|dz] is the
hyperbolic metric on Q* = j(Q), the reflection of Q about dR.

THEOREM 3 Let Q be a hyperbolic subsurface of R such that
QN R+ and jQ\R)=Q, or equivalently, Q\R < Q*. Then
Ao Aala) < 1 for ae Q\R with equality if and only if Q is symmetric
about 6R.

will be in force
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Proof We have already noted that equality holds if Q is symmetric
about ¢R. Define a metric p(z)|d=| on Q by

[ Zg(=)]dz] on QnNR,
12“*(:)](1:{ on O'R.

The second portion of this definition makes sense because Q\ R = Q* by
hypothesis. In order to conclude that p(z)|dz| is a continuous metric on
Q, we must show that the two parts of the definition are the same on
QN R From j<j(z) =z we obtain (3j/cz)(j(z))(&f/dz)(z) = 1. This
yields [(¢j/z)(z)| = 1 at any fixed point of j; in particular, this holds at
each point of @ » dR. This demonstrates that p(z)|dz| is well-defined and
continuous on Q. Trivially. p/ig <1 on Q@R and p(z)|d=| has
constant curvature —4 on Q\(R. so p(z)|dz] is its own supporting metric
ateach point of Q\@R. Theorem [ implies that p/iq < 1, which produces
the inequality of the theorem for ae Q\R. If equality holds at a point
ac Q\R. then we have Jge ig — prrg < 1 in a neighborhood of ¢ with
equality at ¢ and Theorem 2 implies Q = Q*.

p(z)|dz| =

Remark  Jorgensen | 7] established this theorem in the special case in
which R is an open hall-plane in C, 7R is the circle on the Riemann
sphere that bounds R, R = P and R < Q. In this paper our applications
of Theorem 3 will generally be to regions on the sphere but we will not
always have R < Q, so Jorgensen'’s version of Theorem 3 does not suffice
for our purposes. Also, Jorgensen used the boundary behavior of the
hyperbolic metric in his proof, while this issue does not even enter into
our proof.

COROLLARY 1 (8/0n)(jgx/Ag)(b) =0 for beQA AR with  strict
inequality unless Q is symmetric abour OR, where /én denotes
differentiation in the direction of the inward-pointing normal on ¢R.

Proof Fixbe Qn @R. Because ig+/iq < | on Q\R with equality at
b, itis elementary that (¢/dn)(Agx/7q)(b) > 0. Jorgensen [10, Lemma 1.2]
showed that if Zg+ /4 < I in a disk with equality at a boundary point,
then ¢/crlog(igs/4q) > 0 at this boundary point, where ¢/ér denotes
differentiation in the radial direction away from the center of the disk.
By applying this result to a small disk in Q\R that is tangent to dR at b,
we conclude that (¢/Cn)(4gs/40)(b) > 0 when Q is not symmetric about
CR. This is essentially an instance of a strong form of the maximum
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principle for linear elliptic partial differential equations that is due to
Hopf ([5]. [13. Chapter 2]).

CorOLLARY 2 ForbeQn ¢Rand ue Q R.dgla.b) = doljla).h) with
inequality unless € s symmetric about CR.

Proof Let ; bean h-geodesic on Q from a to h. Take 7, to be the
he first point of intersection of y with (R and 7, to

subarc of y fromatot
y, and 7, = Q\R so

be the remainder, if any, of ;. Then y =7, +
r

dQ(a, b) = /".Q(:)‘d;’l =

Y

.
Jo(2)|d=] + [ Aolz)|dz]|

v

~

J*(Ag(2)|dz]) + ( Jo(2)|dz]

J s
J2

WV

Ji

= ;.Q(:)1¢1:i+| Jo(2)|dz) = dalila). b).

4 7,18 a pathon Q from j(a) to b. 1f Q15 not symmetric

because j
about ¢R, then Age/sq < 1 on 7y (R and strict inequality holds in the

above chain of inequalities.

Remark A special case of Corollary 2 for simply connected regions is
due to Ullman [14] and Jorgensen [7, Theorem 3] extended it to
multiply connected regions.

We shall most often appiy the resuits of this section to the following
situation. I” will denote a circle on the Riemann sphere, R will be one of
the open disks on P? determined by I'and R = R v I" In this case we can
regard P itself as the Schottky double of R across ¢R=T and j is
ordinary reflection in the circle FIfQnT # & and j(Q\R) = Q. then

olz) = 2qli(2))

(% (:)\ = Jgel2)

for z € Q\ R with strict inequality unless Q is symmetric about I. IfTisa
straight line, then |0j/dz[ = 1. Also, forzeQn T

(—3/«»9 * A 1.

-~ - =
on Ch
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with strict inequality unless Q is symmetric about I. When I" is a straight
line, this simplifies to

o(2)

0= —
cn

forzeQn .

5. MONOTONICITY PROPERTIES OF THE HYPER-
BOLIC METRIC AND LANDAU’'S THEOREM

Hempel [4] established several monotonicity properties for the
hyperbolic metric of C\{0, 1} by making use of a maximum principle for
for partial differential equations together with boundary estimates for
the density of the hyperbolic metric that are obtained by using the
classical theory of the elliptic modular function. We present simple,
geometric proofs of various monotonicity properties of the hyperbolic
metric which contain those of Hempel as special instances. As one
application of his results, Hempecl derived a sharp form of Landau’s
theorem. An independent proof was given by Jenkins [6], who
employed ideas from the topological theory of functions. We give a
direct proof of the explicit expression for the bound in Landau's
Theorem.

THEOREM 4 Let Q be a hyperbolic region in C.

W) If {z: Im(z) > 0} = Q, then di4/3y < O for Im(z) > 0.
(i) If 0Q < [0, oo, then 0iq/d0 < O for 0 < 8 < 7 with the reverse
inequality for —n < 0 < 0.
(@) If f{z: O<|z—al<p,=Q and :z=a+re", then
Ohq/0r > —(Ao/r) for re(0,p) so that rigla + re®) is strictly
increasing on (0, p) for each fixed 0.

Proof (i) Fix yo >0 and let R = |z: Im(z) > y,}. Since Q o R,
Corollary 1 of Theorem 3 gives d/iq/¢y < 0. Strict inequality must hold
since symmetry about ¢R would give Q = C and C is not hyperbolic.

(i) Because Q is symmetric about the real axis, Ay(Z) = Ag(z).
Therefore, it suffices to establish di,/30 < 0for 0 < 6 < & since then the
reverse inequality for —n < 0 < Ofollows automatically. Fix 0, € (0, «).
Let I' be the line through 0 and ¢ and R the half-plane determined by I'
which contains —1. If R=RuUT, then Q > R\ {0} > R and again
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)

Corollary 1 of Theorem 3 produces é4q/¢6 < 0. Equality would imply Q
is symmetric about I and so Q o C\{0} which i1s impossible.

(iii) There is no harm in assuming that ¢ = 0. Fix r, € (0, p) and let
[ ={z|]=r,R= \_ 0 < |z < ro}. Then jiz) = r§/Z is reflection in
[ = ¢R and clearly j(Q\R) = R = Q. Now, Corollary 1 of Theorem 3
yields

jal

C A -

& Lialrd/2 1217 <
,

for |z] = r,. This is equivalent to the inequality in part (i) of the
theorem. Equality would imply @ > C\{0}, a contradiction.

Remarks From part (ii) of Theorem 4 we conclude that Ag(re®) is
strictly decreasing on (0, 7) and strictly increasing on (—n, 0). This is a
special case of a symmetry property of the hyperbolic metric due to
Weitsman [ 15] Tn particular. this implies that on each circle about the
origin the density 4, ; of the hyperbolic metric 44 (z)}dz{ on [0, I}
attains its minimum valuc on the negative real axis, a result due to
Lehto, Virtanen and Vaisdid [8]. For the unit circle this was
rediscovered by Jenkins [6]. Set

1 D4yt
g, (—1)  4n?

K= = 4.3768796 . ..
([4], [6]); 4g.1(— 1) is the minimum value of 4, ; on the unit circle and
— 1 is the unique point at which the minimum is attained.
THEOREM 5 For ze C\[0, 1]
. . 1
Fo1 ) Slogill + K)

with strict inequality unless z = — 1.

Proof Define a continuous metrix p(z)jdz| on C\{0} by p(z) =
1/2|z|(loglz|| + K). For |z] = 1, p(z) = 1/2K = 4y ,(— 1) < 44, (z) with
strict inequality for z # — 1. Next, we show that p(z)|dz| has curvature
—4 off the unit ClI‘Cle. This can be accomplished by direct calculation,
but here is an easier method that also yields additional information. If
r=e" > 1, then for 0 < |7 <1

= 2z|(log r — loglz) A2
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is the density of the hyperbolic metric on the punctured disk D'(r) = {:z:
0 < |z| < r}. Thus, p(z)|dz| obviously has curvature —4 for 0 < |z| < I.
If h(z)=1/z, then direct calculation gives h*(p(z)|dz|) = p(z)|dz].
Because curvature is invariant under a conformal mapping, we may
conclude that p(z)|dz| also has curvature —4 for |z| > 1. Therefore.
p(z)|dz| is its own supporting metric off the unit circle. Theorem 1 gives
p(z) € 4o,4(2) for ze C\{0,1}. We have already observed that strict
inequality holds for |z| = 1, z# —1. It remains to show that strict
inequality holds off the unit circle. If equality held at a, 0 < |a| < 1, then
Apnlz) = p(z) < 4y, (2) for z near a with equality at a and Theorem 2
would imply C\{0, 1} = D'(r), a contradiction. From
h*(p(2)|dz]) = p(z)|dz] and h*(%q ,(z)|dz]) = 7o.1(2)|dz] (because h is a
conformal automorphism of C\ {0, 1}), we know that equality at a would
also result in equality at I/a. Hence, strict inequality also holds for
2| > 1.

Cororrary (Landau’s Theorem) If f is holomorphic in D and

MY = ! 1
SOy =C00 1

(L= 2P < 2@l logl f ()] + K).

Equality holds at a€ D if and only if { is a holomorphic universal covering
of D onto C\{0, 1} with f(a)= —1.

hen for ze D

Proof The principle of hyperbolic metric gives

|
)Lo.l(.f(z)))f/(z)’ < Apl2) =

R

with equality if and only if f is a holomorphic covering of D onto
C\{0, 1}. Theorem 5 gives
S'(2)
2[f(2)I(logl /() + K)
Necessary and sufficient for equality at z = a where f’(a) # 0 is that

f(a) = — 1. By combining these two inequalities, we obtain the desired
result.

< Ao (SN

6. HYPERBOLIC CONVEXITY

We now give an interpretation of Theorem 3 in terms of convexity
relative Lo hyperbolic geometry. Suppose Q is a hyperbolic Riemann
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surface and E a subset of Q. E is called hyperbolically convex. or h-convex
for short, if for any pair u, b of distinct points in E every h-geodesic
joining ¢ and b also lies in E. Recall that an /hi-geodesic need not be
unique if Q is not simply connected. Let R, R, éR, R and j be as in
Section 4.

THEOREM 6 Let Q be a hyperbolic subsurfuce of R such that
QNAR#= Y andj(QbR) = Q. Then Q@ R is an h-convex subser of €.

Proof First, suppose that Q is symmetric about éR. We wish to show
that any h-geodesic y that joins a, b e Q n R must remain in Q 1 R. Let
f:D—Q be an analytic universal covering projection such that
f(0)e Q@ R and f maps the positive direction along the real axis at the
origin into the positive direction along ¢R at f{0). Then j( f(z)) has the
same properties, so f(z) = j(f(2)). Then f maps (—1, 1) onto a single
contour of /R, fmapsD” = fzeD:-Im(-) > 0l onto Q@ Rand D~ =
fzeD: Im(z) < 0} onto QN (R\R). Fix de D" with f(@) = a and let 7
be the unique hit ol y via j with initial point a. Then 7 is an fi-geodesic in
D connecting a€ 07 toa point b that lies over b. Because (D0 ") < R R,
we must have be D 7. Since D * is h-convex, it follows that 7 < {3 ' and
0y =foyc QN R.

Next, assume that Q is not symmetric about ¢R. The initial step is to
show that any h-geodesic y connecting a, b€ Q N R must lie in Q N R.
We are assuming that

Y A N
uold, U

~——

Because y is a compact regular analytic arc, y meets ¢R in only finitely
many points; otherwise, y would be contained in some contour of ¢R
[9], which is nonsensical. If  did not remain in Q N R, then 7 would
contain a subarc § such that the endpoints of d lie on Q » JR and
otherwise ¢ is contained in Q\R. Then j - & has the same endpoints as &
and since Q is not symmetric about JR,

f Aglz)ldz] = f J*Cal2)ldz) < J INETED
jeo ] d

Consequently, if we would replace the subarc é of y by j- J, then we
would obtain a path on Q joining a and b with strictly smaller hyperbolic
length than y. This is impossible since y is an h-geodesic. Therefore,
1< QN R.
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All that remains is to show that 3 does not meet ¢R. Let f: D — Q be
an analytic universal covering projection with f(0) = a. The group G of
cover transformations consists of all conformal automorphisms T of I

suchthat f T = f. Let A denote the Dirichlet fundamental region for G
with center O: that s, A = {— d l(\ o)< Jd IT(()\ :)fOrd]] Tc C T # ‘l:
The covering projection f is mJectlve on A. Let 7 be the lift of * with
initial point 0. The terminal point A of 7 lies over b and bed(A)
moving b slightly towards « along -, lfnecessdry, we may assume b e A.
Since y is an h-geodesic, so is . Thus, 7 is a radial line segment. For ¢
near b let d be an h-geodesic from a to c. We know that 6 = Q n R. Let &
be the lift with initial point 0. Then § is a radial segment from 0 to ¢ € A
which lies over ¢. Hence. there is a small closed disk about b such that
any radial segment from Oto a point of this disk projects to an h-geodesic
in QN R. Let K be the closed convex hull of the set consisting of 0
together with the closed disk about b. Then f(K) < Q n R, so the open

mapping theorem gives /(int(K))< Qn R. We conclude that
v QN R, s0 Qn Ris h-convex

:0<lz <1, R=C"0) and

Example 1 Let Q =C\|0,1}, R = |=
11 < Q, so we know that QN R=z

j(z) = 1/z. Clearly, jiQ\R) = R\
0 < |z| < 1} is h-convex in Q.

Example 2 Let Q={z:p ' <|z| <p}, p>1, R={z: Im(z) < d}
and j denote reflection in the horizontal line Im(z)=d. If
d=(1/2)(p + p~ ') > 1,then Q N Ris h-convex since j(Q\R) = Q. Note
that Q N R is doubly connected, + 1€ {2 R and both arcs of the unit
circle joining + 1 are h-geodesics.

Jorgensen [ 7] remarked that an open disk or half-plane contained in a
hyperbolic region on P is always h-convex. Flinn [3] showed that the
only open sets E in P with the property that E is h-convex in every
simply connected region containing E were disks and half-planes.
Theorem 6 lets us conclude that certain sets besides disks and half-
planes are sometimes h-convex. Examples 1 and 2 illustrate this. We
now offer a simple geometric criterion for h-convexity which includes
disks contained in the region as a special case. A region Q is said to be
starlike with respect to ¢ € cl(Q) provided that for every ze Q the half-
open line segment (c, z] belongs to Q.

THEOREM 7  Suppose Q is a hyperbolic region in C and Q is starlike with
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respect to c€cl(Q). Then QN {zi|z = | < r} is h-convex in Q for any
r> 0.

Proof Let T =z |z = =r], R=!z1|z—= ¢ <r} and j denote
reflection in T It is sufficient to show that JIQ\R) = Q. Consider any
-e Q\R. By hypothesis the segment (c. z] lies in Q. Set { = (c. HIaRE
Then (c.{] = Q and the reflection j(z) of z lies on (c, {] because j maps
each ray emanating from ¢ onto itself, but j interchanges the interior and
exterior of I

CoRrOLLARY 1 Suppose [:D —Qisa conformal mapping with f(0) = 0
and Q is starlike with respect to the origin. Then for any r > 0 the set
FHQA{z |z <)) is h-convex in D. In  particular,
QN {20 |2 < 1)) is starlike with respect to the origin.

Proof The theorem insures us that QN {z:]7] < r}is h-convex in Q.
Becausc H-convexity 1s a conformal invariant, QA ) <) ish-
convex in D). Since radial line scgments in [ are h-geodesics, any set £
which contains the origin and is h-convex is starlike with respect to the
origin.

COROLLARY 2 Let Q # C be a convex region in C. Then for any
cecl@Q) N C and any r>0,Qn {z: |z — c| < r} is h-convex in Q.

Proof Since Q is convex, it is starlike with respect to every point in
c(@Q)n C.
ino sense Corollary 2is best possible. If H is the

Remark Inthefollowingsens
upper half-plane, then the h-geodesics are circles and lines that are
orthogonal to the real axis. Of course, circles orthogonal to the real axis
have their center on the real axis. Simple geometric considerations show

that if Im(c) < O, then H N {z: |z — ¢| < r} is not h-convex in H.
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