Math 143 First Midterm Solutions

Problem 1. [8 points] Find the area under the curve $y=x e^{-x}$ between $x=0$ and $x=2$.
The required area is the integral of $x e^{-x}$ from $x=0$ to $x=2$. We use integration by parts

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

to compute this integral. Set

$$
\left\{\begin{array} { l l }
{ u } & { = x } \\
{ d v } & { = e ^ { - x } }
\end{array} \quad \text { so } \quad \left\{\begin{array}{ll}
d u & =d x \\
v & =-e^{-x}
\end{array}\right.\right.
$$

Then,

$$
\begin{aligned}
\text { area } & =\int_{0}^{2} x e^{-x} d x=-\left.x e^{-x}\right|_{0} ^{2}+\int_{0}^{2} e^{-x} d x \\
& =-2 e^{-2}-\left.e^{-x}\right|_{0} ^{2} \\
& =-2 e^{-2}-e^{-2}+1 \\
& =1-3 e^{-2} \approx 0.593994
\end{aligned}
$$

Problem 2. [18 points] Integrate:
(i) $\int x^{2} \sqrt{1+x^{3}} d x$

This is a standard substitution. Set $u=1+x^{3}$, so $d u=3 x^{2} d x$. Then,

$$
\begin{aligned}
\int x^{2} \sqrt{1+x^{3}} d x & =\int \sqrt{u} \cdot \frac{1}{3} d u=\frac{1}{3} \int u^{1 / 2} d u \\
& =\frac{2}{9} u^{3 / 2}+C=\frac{2}{9}\left(1+x^{3}\right)^{3 / 2}+C .
\end{aligned}
$$

(ii) $\int \sqrt{4-x^{2}} d x$

We use a trigonometric substitution. Set $x=2 \sin \theta$, so $d x=2 \cos \theta d \theta$.

Then,

$$
\begin{aligned}
\int \sqrt{4-x^{2}} d x & =\int \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta \\
& =4 \int \sqrt{1-\sin ^{2} \theta} \cdot \cos \theta d \theta \\
& =4 \int \cos ^{2} \theta d \theta \\
& =2 \int(1+\cos (2 \theta)) d \theta \quad \text { (doubling angle formula) } \\
& =2 \theta+\sin (2 \theta)+C
\end{aligned}
$$

To write this answer in terms of x, note that

$$
\theta=\sin ^{-1}\left(\frac{x}{2}\right)
$$

and

$$
\sin (2 \theta)=2 \sin \theta \cdot \cos \theta=x \cdot \sqrt{1-\left(\frac{x}{2}\right)^{2}}=\frac{1}{2} x \sqrt{4-x^{2}}
$$

It follows that

$$
\int \sqrt{4-x^{2}} d x=2 \sin ^{-1}\left(\frac{x}{2}\right)+\frac{1}{2} x \sqrt{4-x^{2}}+C
$$

(iii) $\int \frac{1}{x\left(x^{2}+4\right)} d x$

We use partial fractions. Write

$$
\frac{1}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4} .
$$

To determine the constants A, B, C, find the numerator of the combined fraction on the right and set it equal to the numerator on the left:

$$
1=A\left(x^{2}+4\right)+(B x+C) x=(A+B) x^{2}+C x+4 A
$$

Since this is to hold for every x, it follows that

$$
A+B=0, \quad C=0, \quad 4 A=1
$$

or

$$
A=\frac{1}{4}, \quad B=-\frac{1}{4}, \quad C=0
$$

Thus,

$$
\begin{aligned}
\int \frac{1}{x\left(x^{2}+4\right)} d x & =\frac{1}{4} \int \frac{1}{x} d x-\frac{1}{4} \int \frac{x}{x^{2}+4} d x \\
& =\frac{1}{4} \ln |x|-\frac{1}{4} \cdot \frac{1}{2} \ln \left|x^{2}+4\right|+C \quad\left(\text { substitution } u=x^{2}+4\right) \\
& =\frac{1}{4} \ln |x|-\frac{1}{8} \ln \left(x^{2}+4\right)+C
\end{aligned}
$$

Problem 3. [8 points] Find $\lim _{x \rightarrow 0}\left(1-5 x^{2}\right)^{1 / x^{2}}$ (L'Hôpefully you remember what to do).
As $x \rightarrow 0$, the base $1-5 x^{2}$ tends to 1 and the exponent $1 / x^{2}$ tends to ∞, so this limit has the indeterminate form 1^{∞}. Call

$$
L=\lim _{x \rightarrow 0}\left(1-5 x^{2}\right)^{1 / x^{2}}
$$

Then,

$$
\begin{array}{rlr}
\ln L & =\lim _{x \rightarrow 0} \ln \left[\left(1-5 x^{2}\right)^{1 / x^{2}}\right] & \\
& =\lim _{x \rightarrow 0} \frac{\ln \left(1-5 x^{2}\right)}{x^{2}} & \\
& =\lim _{x \rightarrow 0} \frac{\frac{-10 x}{1-5 x^{2}}}{2 x} & \\
& =\lim _{x \rightarrow 0} \frac{-5}{1-5 x^{2}} & \text { (L'Hôpital's rule) } \\
& =-5 . & \\
\text { (cancel } 2 x)
\end{array}
$$

It follows that $L=e^{-5}$.
Problem 4. [6 points] Use your calculator to find the Midpoint and Simpson approximations to the integral

$$
I=\int_{0}^{1} \sin \left(x^{4}\right) d x
$$

with $n=10,20$ and 50 subdivisions (round your answers to six decimal places). Based on your results, estimate the value of I to four decimal places.

We use the TI program ISUMS for $Y_{1}=\sin \left(X^{4}\right), A=0, B=1$ and $N=10,20,50$. Here are the results:

	$n=10$	$n=20$	$n=50$
M	0.186652	0.187343	0.187533
S	0.187565	0.187569	0.187569

This experiment suggests a value of $I=0.1875$ up to four decimal places.

