
Math 143 Second Midterm Solutions

Problem 1. [9 points] Let p > 0 be a fixed number. Show that the improper

integral
∫ ∞

0
x e−px2

dx converges and find its value.

The substitution
u = −px2 du = −2px dx

shows that∫
x e−px2

dx = − 1
2p

∫
eu du = − 1

2p
eu + C = − 1

2p
e−px2

+ C.

Hence, ∫ ∞

0
x e−px2

dx = lim
b→∞

∫ b

0
x e−px2

dx

= lim
b→∞
− 1

2p
e−px2

∣∣∣b
0

= lim
b→∞
− 1

2p
(e−pb2 − e0).

But limb→∞ e−pb2
= 0 since p > 0 and e0 = 1. It follows that our improper integral

converges and ∫ ∞

0
x e−px2

dx =
1

2p
.

Problem 2. [9 points] In each case, find lim
n→∞

an:

(i) an = cos(nπ)

We know from the definiton of the cosine function that cos(nπ) is 1 if n is even
and is−1 if n is odd. In other words, cos(nπ) = (−1)n which takes the values 1
and −1 in an alternating pattern. Clearly this sequence diverges, so limn→∞ an
does not exist.

(ii) an =

√
n

n + 4
Here the numerator and denominator both grow arbitrarily large as n→ ∞. To
see what happens to their ratio, it helps if we first divide both by n:

an =

√
n

n + 4
=

√
n

n
n + 4

n

=

1√
n

1 +
4
n

.



It is now clear that

lim
n→∞

an =
0

1 + 0
= 0.

(iii) {an} is a sequence such that cos
( 1

n

)
≤ an ≤ 1 +

2017
n2 for all n.

As n → ∞, we have 1/n → 0, so cos(1/n) → cos(0) = 1. Also 1/n2 → 0, so
1 + 2017/n2 → 1. The sandwich lemma now shows that limn→∞ an = 1.

Problem 3. [12 points] Determine the convergence or divergence of the following
series. In each case, specify the test that you are using:

(i)
∞

∑
n=1

√
n

3n2 − 1

For large n the general term
√

n
3n2 − 1

behaves like
√

n
3n2 =

1
3n3/2 . This suggests

that we compare our series with ∑∞
n=1

1
n3/2 :

lim
n→∞

√
n

3n2 − 1
1

n3/2

= lim
n→∞

n2

3n2 − 1
= lim

n→∞

1

3− 1
n2

=
1
3
> 0.

Since the series ∑∞
n=1

1
n3/2 converges (p-series with p = 3/2 > 1), the limit

comparison test shows that our series must converge too.

(ii)
∞

∑
n=1

n e−n2

Consider the function x e−x2
which is positive and decreasing for x > 1. By a

computation similar to problem 1 with p = 1, the improper integral∫ ∞

1
x e−x2

dx = lim
b→∞

∫ b

1
x e−x2

dx

= lim
b→∞
−1

2
e−x2

∣∣∣b
1

= lim
b→∞
−1

2
(e−b2 − e−1) =

1
2e

converges. Hence, by the integral test, the series ∑∞
n=1 n e−n2

converges too.



(iii)
∞

∑
n=1

n2

(2n− 1)(n + 1)

We note that

lim
n→∞

n2

(2n− 1)(n + 1)
= lim

n→∞

n2

2n2 + n− 1

= lim
n→∞

1

2 +
1
n
− 1

n2

=
1
2
6= 0.

Hence, by the basic divergence test, the series diverges.

Problem 4. [10 points] Find the value(s) of x such that
∞

∑
n=2

(1 + x)−n =
1
6

.

Recall the geometric series formula
∞

∑
n=2

rn = r2 + r3 + r4 + · · · = r2

1− r

which is valid for |r| < 1. Applying this formula for r = 1/(1 + x), we see that

∞

∑
n=2

(1 + x)−n =
∞

∑
n=2

( 1
1 + x

)n
=

1
(1 + x)2

1− 1
1 + x

=

1
(1 + x)2

x
1 + x

=
1

x2 + x
=

1
6

.

This gives x2 + x = 6 or x2 + x− 6 = 0, which by the quadratic formula has two
solutions x = 2 and x = −3. It is easy to check that both solutions indeed work.
For x = 2, we obtain the series

∞

∑
n=2

3−n =
∞

∑
n=2

(1
3

)n
=

1
9

1− 1
3

=
1
6

,

while for x = −3 we obtain the series
∞

∑
n=2

(−2)−n =
∞

∑
n=2

(
− 1

2

)n
=

1
4

1 + 1
2

=
1
6

.


