Math 143 Second Midterm Solutions

Problem 1. [9 points] Let $p>0$ be a fixed number. Show that the improper integral $\int_{0}^{\infty} x e^{-p x^{2}} d x$ converges and find its value.
The substitution

$$
u=-p x^{2} \quad d u=-2 p x d x
$$

shows that

$$
\int x e^{-p x^{2}} d x=-\frac{1}{2 p} \int e^{u} d u=-\frac{1}{2 p} e^{u}+C=-\frac{1}{2 p} e^{-p x^{2}}+C
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-p x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-p x^{2}} d x \\
& =\lim _{b \rightarrow \infty}-\left.\frac{1}{2 p} e^{-p x^{2}}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{2 p}\left(e^{-p b^{2}}-e^{0}\right)
\end{aligned}
$$

But $\lim _{b \rightarrow \infty} e^{-p b^{2}}=0$ since $p>0$ and $e^{0}=1$. It follows that our improper integral converges and

$$
\int_{0}^{\infty} x e^{-p x^{2}} d x=\frac{1}{2 p}
$$

Problem 2. [9 points] In each case, find $\lim _{n \rightarrow \infty} a_{n}$:
(i) $a_{n}=\cos (n \pi)$

We know from the definiton of the cosine function that $\cos (n \pi)$ is 1 if n is even and is -1 if n is odd. In other words, $\cos (n \pi)=(-1)^{n}$ which takes the values 1 and -1 in an alternating pattern. Clearly this sequence diverges, so $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(ii) $a_{n}=\frac{\sqrt{n}}{n+4}$

Here the numerator and denominator both grow arbitrarily large as $n \rightarrow \infty$. To see what happens to their ratio, it helps if we first divide both by n :

$$
a_{n}=\frac{\sqrt{n}}{n+4}=\frac{\frac{\sqrt{n}}{n}}{\frac{n+4}{n}}=\frac{\frac{1}{\sqrt{n}}}{1+\frac{4}{n}}
$$

It is now clear that

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{0}{1+0}=0
$$

(iii) $\left\{a_{n}\right\}$ is a sequence such that $\cos \left(\frac{1}{n}\right) \leq a_{n} \leq 1+\frac{2017}{n^{2}}$ for all n.

As $n \rightarrow \infty$, we have $1 / n \rightarrow 0$, so $\cos (1 / n) \rightarrow \cos (0)=1$. Also $1 / n^{2} \rightarrow 0$, so $1+2017 / n^{2} \rightarrow 1$. The sandwich lemma now shows that $\lim _{n \rightarrow \infty} a_{n}=1$.

Problem 3. [12 points] Determine the convergence or divergence of the following series. In each case, specify the test that you are using:
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{3 n^{2}-1}$

For large n the general term $\frac{\sqrt{n}}{3 n^{2}-1}$ behaves like $\frac{\sqrt{n}}{3 n^{2}}=\frac{1}{3 n^{3 / 2}}$. This suggests that we compare our series with $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$:

$$
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}}{3 n^{2}-1}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}-1}=\lim _{n \rightarrow \infty} \frac{1}{3-\frac{1}{n^{2}}}=\frac{1}{3}>0
$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges (p-series with $p=3 / 2>1$), the limit comparison test shows that our series must converge too.
(ii) $\sum_{n=1}^{\infty} n e^{-n^{2}}$

Consider the function $x e^{-x^{2}}$ which is positive and decreasing for $x>1$. By a computation similar to problem 1 with $p=1$, the improper integral

$$
\begin{aligned}
\int_{1}^{\infty} x e^{-x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x^{2}} d x \\
& =\lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-x^{2}}\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty}-\frac{1}{2}\left(e^{-b^{2}}-e^{-1}\right)=\frac{1}{2 e}
\end{aligned}
$$

converges. Hence, by the integral test, the series $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges too.
(iii) $\sum_{n=1}^{\infty} \frac{n^{2}}{(2 n-1)(n+1)}$

We note that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{2}}{(2 n-1)(n+1)} & =\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n^{2}+n-1} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2+\frac{1}{n}-\frac{1}{n^{2}}} \\
& =\frac{1}{2} \neq 0
\end{aligned}
$$

Hence, by the basic divergence test, the series diverges.
Problem 4. [10 points] Find the value(s) of x such that

$$
\sum_{n=2}^{\infty}(1+x)^{-n}=\frac{1}{6}
$$

Recall the geometric series formula

$$
\sum_{n=2}^{\infty} r^{n}=r^{2}+r^{3}+r^{4}+\cdots=\frac{r^{2}}{1-r}
$$

which is valid for $|r|<1$. Applying this formula for $r=1 /(1+x)$, we see that

$$
\sum_{n=2}^{\infty}(1+x)^{-n}=\sum_{n=2}^{\infty}\left(\frac{1}{1+x}\right)^{n}=\frac{\frac{1}{(1+x)^{2}}}{1-\frac{1}{1+x}}=\frac{\frac{1}{(1+x)^{2}}}{\frac{x}{1+x}}=\frac{1}{x^{2}+x}=\frac{1}{6}
$$

This gives $x^{2}+x=6$ or $x^{2}+x-6=0$, which by the quadratic formula has two solutions $x=2$ and $x=-3$. It is easy to check that both solutions indeed work. For $x=2$, we obtain the series

$$
\sum_{n=2}^{\infty} 3^{-n}=\sum_{n=2}^{\infty}\left(\frac{1}{3}\right)^{n}=\frac{\frac{1}{9}}{1-\frac{1}{3}}=\frac{1}{6}
$$

while for $x=-3$ we obtain the series

$$
\sum_{n=2}^{\infty}(-2)^{-n}=\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}=\frac{\frac{1}{4}}{1+\frac{1}{2}}=\frac{1}{6}
$$

