Here is a program that computes the left-hand sum, the right-hand sum, the midpoint sum, the trapezoid sum, and the Simpson sum approximations to the definite integral $\int_{a}^{b} f(x) d x$. The program displays the results together so that comparisons can be easily made. In the program, A and B are the limits of the integral, N is the number of subdivisions, and D plays the role of Δx. We store the left-hand sum in the variable L, the right-hand sum in R, the trapezoid sum in T, the midpoint sum in M, and the Simpson sum in S.

First you need to create a new program by pressing [PRGM] \rightarrow [NEW]. Give it a simple name such as ISUMS. Then carefully type in the following code, pressing [ENTER] at the end of each line. To type the variables $A, B, N, D, I, L, R, M, T, S$ use the green [ALPHA] keys. To type Y_{1} press [VARS] \rightarrow [Y-VARS $] \rightarrow[1:$ Functions $] \rightarrow\left[Y_{1}\right]$. The commands Prompt and Disp can be found by pressing [PRGM] \rightarrow [I/O]. The commands For and End are in [PRGM] \rightarrow [CTL]. The symbol \longrightarrow can be called by pressing the key [STO \rightarrow].

```
Prompt \(N\)
Prompt \(A\)
Prompt \(B\)
\((B-A) / N \longrightarrow D\)
\(0 \longrightarrow R\)
\(0 \longrightarrow M\)
For \((I, 1, N)\)
\(A+I * D \longrightarrow X\)
\(R+Y_{1} * D \longrightarrow R\)
\(X-D / 2 \longrightarrow X\)
\(M+Y_{1} * D \longrightarrow M\)
End
\(R+D * Y_{1}(A)-D * Y_{1}(B) \longrightarrow L\)
\((L+R) / 2 \longrightarrow T\)
\((2 M+T) / 3 \longrightarrow S\)
Disp " \(L, R, T, M, S^{\prime \prime}\)
Disp \(L, R, T, M, S\)
```

To execute the program, first store your function $f(x)$ in the Y_{1} function variable, as you normally do when you want to graph $f(x)$. Then press [PRGM] and select ISUMS. At the prompts, enter the values for N, A, and B. The five approximating sums will be displayed on the home screen.

