MAT 160, PROBLEM SEMINAR, WEEK OF 3/8/99

PROBLEM SET 7: INTEGERS AND DIVISIBILITY

You need to know the following facts for this set of problems. In what follows, by an integer we mean an element of the set $\{0,1,2,3, \ldots\}$.

- We say that an integer n divides an integer m, or that m is divisible by n, if $m=n k$ for some integer k. In this case we write $n \mid m . n$ is also called a divisor of m. For example, $3|12,5| 235, n \mid 0$ and $n \mid n$ for all integers n.
- An integer $p \geq 2$ is called a prime if p and 1 are the only divisors of p. For example, 2, 11, 37 are primes while 35 is not, since both 5 and 7 divide 35 . Note that 2 is the only even integer which is also prime.
- Fundamental Theorem of Arithmetic. Every integer $n \geq 2$ is either a prime or else can be written as a product of (not necessarily distinct) primes. Modulo the order in which the primes appear, there is exactly one way to decompose an integer into primes.

For example, $24=2 \times 2 \times 2 \times 3,3381=3 \times 7 \times 7 \times 23$.
In a fancier language, the theorem says: Every integer $n \geq 2$ can be written as

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}
$$

where $p_{1}<p_{2}<\cdots<p_{k}$ are primes, each power a_{j} is at least 1 , and $k \geq 1$. This decomposition is unique in the sense that if we have another decomposition

$$
n=q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{m}^{b_{m}}
$$

into primes $q_{1}<q_{2}<\cdots<q_{m}$, then $k=m, p_{j}=q_{j}$ and $a_{j}=b_{j}$ for all $j=1,2, \ldots, k$.

- Division Algorithm. Given integers n, k, you can divide n by k to get a quotient q and a remainder r :

$$
n=q k+r, \quad 0 \leq r<k
$$

q are r are uniquely determined by n and k. It is easy to see that n is divisible by k if and only if the remainder r is zero.

- For integers n, m, k, we say that n is congruent to m modulo k if n and m have the same remainder when we divide them by k. In this case we write $n \equiv m(\bmod k)$. For example, $16 \equiv 0(\bmod 4)$, $22 \equiv 4(\bmod 6)$, and $51 \equiv 2(\bmod 7)$.

An equivalent definition is the following (which is often easier to apply): $n \equiv m(\bmod k)$ if and only if k divides the difference $n-m$. This relation \equiv has the following property: If $n \equiv m$ (mod $k)$ and $n^{\prime} \equiv m^{\prime}(\bmod k)$, then

$$
n+n^{\prime} \equiv m+m^{\prime}(\bmod k)
$$

and also

$$
n n^{\prime} \equiv m m^{\prime}(\bmod k)
$$

Problem 43. (a) If an integer n is not divisible by 3 , is it possible that $2 n$ be divisible by 3 ? (b) If the number $15 n$ is divisible by 6 , must n be divisible by 6 ?

Problem 44. Let p and q be distinct primes. The number $p q$ has 4 divisors: $1, p, q, p q$. Similarly, $p^{2} q$ has 6 divisors: $1, p, p^{2}, q, p q, p^{2} q$. Generalizing this, can you find the number of divisors for $p^{n} q^{m}$, where $n \geq 1, m \geq 1$? Can you find the number of divisors for $p^{n} q^{m} h^{k}$, where now p, q, h are distinct primes? Can you guess an algorithm for finding the number of divisors of any integer? (Hint: For the last part, use the Fundamental Theorem of Arithmetic.)

Problem 45. Find all integers n, m which satisfy $n^{2}-m^{2}=37$. (Hint: Note that $n^{2}-m^{2}=$ $(n+m)(n-m)$.)

Problem 46. For any integer n, prove that $n(n+1)(n+2)$ is divisible by 6 . (Hint: Of course you can use induction on n. But it is also possible to show directly that $n(n+1)(n+2)$ is divisible by both 2 and 3.)

Problem 47. What is the rightmost decimal digit of the number 7^{45} ? (Hint: The rightmost decimal digit of an integer is the remainder that you get when you divide the integer by 10 . Use congruences modulo 10 to determine this remainder.)

Problem 48. Prove that for any integer n, the number $n^{3}+2 n$ is always divisible by 3. (Hint: Again, you could use induction on n, but better consider the remainder of n by 3 and use congruences modulo 3.)

Problem 49. Let n be an integer which is not divisible by any of the integers between 2 and \sqrt{n} (inclusive). Prove that n must be a prime.

