This note will give a proof for the higher dimensional version of the chain rule. It will make use of the following simple fact:

Lemma. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then, there is a constant $C \geq 0$ such that

$$
\|T(\mathbf{x})\| \leq C\|\mathbf{x}\|
$$

for every $\mathbf{x} \in \mathbb{R}^{n}$.
Proof. Let $A=\left[a_{i j}\right]$ be the $m \times n$ matrix representing T, so $T\left(x_{1}, \ldots x_{n}\right)=$ $\left(y_{1}, \ldots, y_{m}\right)$, where

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j} \tag{1}
\end{equation*}
$$

for every $1 \leq i \leq m$. Let

$$
\alpha=\max _{i, j}\left|a_{i j}\right| \quad \text { and } \quad \ell(\mathbf{x})=\max _{j}\left|x_{j}\right| .
$$

Then

$$
\|\mathbf{x}\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} \geq \ell(\mathbf{x})
$$

By (1) and the triangle inequality,

$$
\left|y_{i}\right|=\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \leq \sum_{j=1}^{n}\left|a_{i j}\right|\left|x_{j}\right| \leq n \alpha \ell(\mathbf{x})
$$

which shows

$$
\|T(\mathbf{x})\|=\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)^{1 / 2} \leq \sqrt{m} n \alpha \ell(\mathbf{x}) \leq \sqrt{m} n \alpha\|\mathbf{x}\| .
$$

Thus, the lemma holds if we set $C=\sqrt{m} n \alpha$.
Theorem (The Chain Rule). Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is differentiable at $\mathbf{b}=g(\mathbf{a})$. Then, the composition $h=f \circ g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is differentiable at a and

$$
D h(\mathbf{a})=D f(\mathbf{b}) D g(\mathbf{a})
$$

Proof. To simplify the notation, denote $D g(\mathbf{a})$ by T and $D f(\mathbf{b})$ by L. Thus, differentiability of g at a means we can write

$$
\begin{equation*}
g(\mathbf{a}+\mathbf{v})=g(\mathbf{a})+T(\mathbf{v})+\|\mathbf{v}\| E_{g} \tag{2}
\end{equation*}
$$

where $\lim _{\mathbf{v} \rightarrow \mathbf{0}}\left\|E_{g}\right\|=0$. Similarly, differentiability of f at \mathbf{b} means we can write

$$
\begin{equation*}
f(\mathbf{b}+\mathbf{u})=f(\mathbf{b})+L(\mathbf{u})+\|\mathbf{u}\| E_{f} \tag{3}
\end{equation*}
$$

where $\lim _{\mathbf{u} \rightarrow \mathbf{0}}\left\|E_{f}\right\|=0$.

For each $\mathbf{v} \neq \mathbf{0}$, set

$$
\mathbf{u}=g(\mathbf{a}+\mathbf{v})-\mathbf{b}=T(\mathbf{v})+\|\mathbf{v}\| E_{g}
$$

Continuity of g at a shows that $\mathbf{u} \rightarrow \mathbf{0}$ whenever $\mathbf{v} \rightarrow \mathbf{0}$. By (2), (3), and linearity of L,

$$
\begin{aligned}
h(\mathbf{a}+\mathbf{v}) & =f(g(\mathbf{a}+\mathbf{v}))=f(\mathbf{b}+\mathbf{u}) \\
& =f(\mathbf{b})+L(\mathbf{u})+\|\mathbf{u}\| E_{f} \\
& =h(\mathbf{a})+L\left(T(\mathbf{v})+\|\mathbf{v}\| E_{g}\right)+\|\mathbf{u}\| E_{f} \\
& =h(\mathbf{a})+L T(\mathbf{v})+\|\mathbf{v}\| L\left(E_{g}\right)+\|\mathbf{u}\| E_{f} \\
& =h(\mathbf{a})+L T(\mathbf{v})+\|\mathbf{v}\|\left(L\left(E_{g}\right)+\frac{\|\mathbf{u}\|}{\|\mathbf{v}\|} E_{f}\right) .
\end{aligned}
$$

Thus, the claim $\operatorname{Dh}(\mathbf{a})=L T$ will be proved once we show that

$$
\begin{equation*}
\lim _{\mathbf{v} \rightarrow \mathbf{0}} L\left(E_{g}\right)+\frac{\|\mathbf{u}\|}{\|\mathbf{v}\|} E_{f}=0 \tag{4}
\end{equation*}
$$

To see this, note that by the Lemma, there is a constant $C_{1} \geq 0$ such that

$$
\|T(\mathbf{x})\| \leq C_{1}\|\mathbf{x}\|
$$

for every $\mathbf{x} \in \mathbb{R}^{n}$. Similarly, there is a constant $C_{2} \geq 0$ such that

$$
\|L(\mathbf{y})\| \leq C_{2}\|\mathbf{y}\|
$$

for every $\mathbf{y} \in \mathbb{R}^{m}$. Hence,

$$
\begin{aligned}
\left\|L\left(E_{g}\right)+\frac{\|\mathbf{u}\|}{\|\mathbf{v}\|} E_{f}\right\| & \leq\left\|L\left(E_{g}\right)\right\|+\frac{\|\mathbf{u}\|}{\|\mathbf{v}\|}\left\|E_{f}\right\| \\
& \leq C_{2}\left\|E_{g}\right\|+\frac{\|T(\mathbf{v})+\| \mathbf{v}\left\|E_{g}\right\|}{\|\mathbf{v}\|}\left\|E_{f}\right\| \\
& \leq C_{2}\left\|E_{g}\right\|+\frac{\|T(\mathbf{v})\|+\|\mathbf{v}\|\left\|E_{g}\right\|}{\|\mathbf{v}\|}\left\|E_{f}\right\| \\
& \leq C_{2}\left\|E_{g}\right\|+\left(C_{1}+\left\|E_{g}\right\|\right)\left\|E_{f}\right\| .
\end{aligned}
$$

As $\mathbf{v} \rightarrow \mathbf{0}$, both $\left\|E_{g}\right\|$ and $\left\|E_{f}\right\|$ tend to zero, which proves (4).

