
The following is a proof of the 2nd order Taylor’s formula for scalar functions of
several variables, under the assumption that f is merely C2 (the proof in the book
assumes C3).

Theorem. Suppose f : Rn → R is C2 and fix a ∈ Rn. Then, for all h ∈ Rn, we
can write

(1) f (a + h) = f (a) + D f (a) h +
1
2

hT H f (a) h + E2(h).

Here H f (a) = [ ∂2 f
∂xi∂xj

(a)] is the Hessian matrix of f at a, and E2(h) is an error term
which satisfies

E2(h)
∥h∥2 → 0 as h → 0.

The idea is to apply the 2nd order Taylor’s formula to a suitable function of a
single variable. Define g : R → R by

(2) g(t) = f (a + th).

By the chain rule, g is differentiable and

(3) g′(t) = D f (a + th) h.

To examine the possibility of taking another derivative, it will be convenient to
write g′ in terms of the components of the vectors involved. Assuming h =
(h1, h2, . . . , hn), we can write (3) as

g′(t) =
n

∑
j=1

∂ f
∂xj

(a + th) hj.

By the assumption, f is C2 so each partial derivative ∂ f /∂xj is differentiable on Rn.
Applying the chain rule once more, it follows that g′′ exists and

g′′(t) =
n

∑
j=1

(
n

∑
i=1

∂2 f
∂xi∂xj

(a + th) hi

)
hj =

n

∑
i,j=1

∂2 f
∂xi∂xj

(a + th) hihj

which can be put in the matrix form

(4) g′′(t) = hT H f (a + th) h.

Since f is C2, the entries of the Hessian H f are continuous on Rn. Hence the entries
of H f (a + th), being compositions of continuous functions, are continuous in t. It
follows that g′′ is continuous.

Thus, we can apply the 2nd order Taylor’s formula of one-variable calculus to g
on the interval 0 ≤ t ≤ 1:

g(1) = g(0) + g′(0) +
1
2

g′′(c) for some 0 < c < 1.



Substituting various terms from (2), (3) and (4), we obtain

f (a + h) = f (a) + D f (a) h +
1
2

hT H f (a + ch) h

If we define
E2(h) =

1
2

hT H f (a + ch) h − 1
2

hT H f (a) h,

it follows that (1) holds. It remains to show that E2(h)/∥h∥2 → 0 as h → 0.

To this end, note that

E2(h) =
1
2

n

∑
i,j=1

(
∂2 f

∂xi∂xj
(a + ch)− ∂2 f

∂xi∂xj
(a)

)
hihj

so by the triangle inequality

|E2(h)| ≤
1
2

n

∑
i,j=1

∣∣∣∣∣ ∂2 f
∂xi∂xj

(a + ch)− ∂2 f
∂xi∂xj

(a)

∣∣∣∣∣ |hi| |hj|

Each product |hi| |hj| is at most h2
i or h2

j . In either case, |hi| |hj| ≤ h2
1 + · · ·+ h2

n =

∥h∥2. It follows that

|E2(h)| ≤
1
2

n

∑
i,j=1

∣∣∣∣∣ ∂2 f
∂xi∂xj

(a + ch)− ∂2 f
∂xi∂xj

(a)

∣∣∣∣∣ ∥h∥2,

or, dividing by ∥h∥2,

E2(h)
∥h∥2 ≤ 1

2

n

∑
i,j=1

∣∣∣∣∣ ∂2 f
∂xi∂xj

(a + ch)− ∂2 f
∂xi∂xj

(a)

∣∣∣∣∣ .

As h → 0, a + ch → a and from continuity of the second partial derivatives
∂2 f /∂xi∂xj it follows that each term on the right tends to zero. Hence E2(h)/∥h∥2

must tend to zero as well.

Challenge. Can you push this proof further and obtain the k-th order Taylor’s for-
mula in several variables? This would require finding formulas for higher deriva-
tives of g. As a test case, suppose n = 2 and try to obtain a 3rd order formula by
finding g′′′(t), writing

g(1) = g(0) + g′(0) +
1
2

g′′(0) +
1
6

g′′′(c) for some 0 < c < 1,

and substituting in terms of f .


