The following is a proof of the 2nd order Taylor's formula for scalar functions of several variables, under the assumption that f is merely C^{2} (the proof in the book assumes C^{3}).

Theorem. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{2} and fix $\mathbf{a} \in \mathbb{R}^{n}$. Then, for all $\mathbf{h} \in \mathbb{R}^{n}$, we can write

$$
\begin{equation*}
f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+D f(\mathbf{a}) \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}) \mathbf{h}+E_{2}(\mathbf{h}) . \tag{1}
\end{equation*}
$$

Here $\operatorname{Hf}(\mathbf{a})=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right]$ is the Hessian matrix of f at \mathbf{a}, and $E_{2}(\mathbf{h})$ is an error term which satisfies

$$
\frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}} \rightarrow 0 \quad \text { as } \mathbf{h} \rightarrow \mathbf{0}
$$

The idea is to apply the 2nd order Taylor's formula to a suitable function of a single variable. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
g(t)=f(\mathbf{a}+t \mathbf{h}) . \tag{2}
\end{equation*}
$$

By the chain rule, g is differentiable and

$$
\begin{equation*}
g^{\prime}(t)=D f(\mathbf{a}+t \mathbf{h}) \mathbf{h} . \tag{3}
\end{equation*}
$$

To examine the possibility of taking another derivative, it will be convenient to write g^{\prime} in terms of the components of the vectors involved. Assuming $\mathbf{h}=$ $\left(h_{1}, h_{2}, \ldots, h_{n}\right)$, we can write (3) as

$$
g^{\prime}(t)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\mathbf{a}+t \mathbf{h}) h_{j} .
$$

By the assumption, f is C^{2} so each partial derivative $\partial f / \partial x_{j}$ is differentiable on \mathbb{R}^{n}. Applying the chain rule once more, it follows that $g^{\prime \prime}$ exists and

$$
g^{\prime \prime}(t)=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+t \mathbf{h}) h_{i}\right) h_{j}=\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+t \mathbf{h}) h_{i} h_{j}
$$

which can be put in the matrix form

$$
\begin{equation*}
g^{\prime \prime}(t)=\mathbf{h}^{T} H f(\mathbf{a}+t \mathbf{h}) \mathbf{h} . \tag{4}
\end{equation*}
$$

Since f is C^{2}, the entries of the Hessian $H f$ are continuous on \mathbb{R}^{n}. Hence the entries of $\operatorname{Hf}(\mathbf{a}+t \mathbf{h})$, being compositions of continuous functions, are continuous in t. It follows that $g^{\prime \prime}$ is continuous.

Thus, we can apply the 2nd order Taylor's formula of one-variable calculus to g on the interval $0 \leq t \leq 1$:

$$
g(1)=g(0)+g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(c) \quad \text { for some } 0<c<1 .
$$

Substituting various terms from (2), (3) and (4), we obtain

$$
f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+D f(\mathbf{a}) \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}+c \mathbf{h}) \mathbf{h}
$$

If we define

$$
E_{2}(\mathbf{h})=\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}+c \mathbf{h}) \mathbf{h}-\frac{1}{2} \mathbf{h}^{T} H f(\mathbf{a}) \mathbf{h},
$$

it follows that (1) holds. It remains to show that $E_{2}(\mathbf{h}) /\|\mathbf{h}\|^{2} \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$.
To this end, note that

$$
E_{2}(\mathbf{h})=\frac{1}{2} \sum_{i, j=1}^{n}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+c \mathbf{h})-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right) h_{i} h_{j}
$$

so by the triangle inequality

$$
\left|E_{2}(\mathbf{h})\right| \leq \frac{1}{2} \sum_{i, j=1}^{n}\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+c \mathbf{h})-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right|\left|h_{i}\right|\left|h_{j}\right|
$$

Each product $\left|h_{i}\right|\left|h_{j}\right|$ is at most h_{i}^{2} or h_{j}^{2}. In either case, $\left|h_{i}\right|\left|h_{j}\right| \leq h_{1}^{2}+\cdots+h_{n}^{2}=$ $\|\mathbf{h}\|^{2}$. It follows that

$$
\left|E_{2}(\mathbf{h})\right| \leq \frac{1}{2} \sum_{i, j=1}^{n}\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+c \mathbf{h})-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right|\|\mathbf{h}\|^{2},
$$

or, dividing by $\|\mathbf{h}\|^{2}$,

$$
\frac{E_{2}(\mathbf{h})}{\|\mathbf{h}\|^{2}} \leq \frac{1}{2} \sum_{i, j=1}^{n}\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a}+c \mathbf{h})-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{a})\right|
$$

As $\mathbf{h} \rightarrow \mathbf{0}, \mathbf{a}+c \mathbf{h} \rightarrow \mathbf{a}$ and from continuity of the second partial derivatives $\partial^{2} f / \partial x_{i} \partial x_{j}$ it follows that each term on the right tends to zero. Hence $E_{2}(\mathbf{h}) /\|\mathbf{h}\|^{2}$ must tend to zero as well.

Challenge. Can you push this proof further and obtain the k-th order Taylor's formula in several variables? This would require finding formulas for higher derivatives of g. As a test case, suppose $n=2$ and try to obtain a 3rd order formula by finding $g^{\prime \prime \prime}(t)$, writing

$$
g(1)=g(0)+g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(0)+\frac{1}{6} g^{\prime \prime \prime}(c) \quad \text { for some } 0<c<1,
$$

and substituting in terms of f.

