The Cauchy-Schwarz inequality. For any pair of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, we have

$$
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| .
$$

Here is a very simple proof of this inequality. If $\mathbf{u}=\mathbf{0}$, both sides of the inequality are zero and there is nothing to prove. So let us assume $\mathbf{u} \neq \mathbf{0}$. Consider the function

$$
f(t)=\|t \mathbf{u}+\mathbf{v}\|^{2}
$$

of the real variable t, which satisfies $f(t) \geq 0$ for all t. It is easy to see that $f(t)$ is a quadratic polynomial of the form $a t^{2}+b t+c$ with $a>0$. In fact,

$$
\begin{aligned}
f(t) & =(t \mathbf{u}+\mathbf{v}) \cdot(t \mathbf{u}+\mathbf{v}) \\
& =(t \mathbf{u}) \cdot(t \mathbf{u})+(t \mathbf{u}) \cdot \mathbf{v}+\mathbf{v} \cdot(t \mathbf{u})+\mathbf{v} \cdot \mathbf{v} \\
& =\underbrace{\|\mathbf{u}\|^{2}}_{a} t^{2}+\underbrace{2(\mathbf{u} \cdot \mathbf{v})}_{b} t+\underbrace{\|\mathbf{v}\|^{2}}_{c} .
\end{aligned}
$$

Now the discriminant $b^{2}-4 a c$ of this quadratic polynomial cannot be positive since in that case f would have two distinct roots and any t between those roots would satisfy $f(t)<0$, contrary to the fact that $f(t) \geq 0$ for all values of t. Thus,

$$
b^{2}-4 a c \leq 0 \Longrightarrow 4(\mathbf{u} \cdot \mathbf{v})^{2}-4\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \leq 0 \Longrightarrow(\mathbf{u} \cdot \mathbf{v})^{2} \leq\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}
$$

Taking the square roots of both sides, we obtain the Cauchy-Schwarz inequality.

