The Cauchy-Schwarz inequality. *For any pair of vectors* $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ *, we have*

$$|\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

Here is a very simple proof of this inequality. If $\mathbf{u} = \mathbf{0}$, both sides of the inequality are zero and there is nothing to prove. So let us assume $\mathbf{u} \neq \mathbf{0}$. Consider the function

$$f(t) = \|t\mathbf{u} + \mathbf{v}\|^2$$

of the real variable *t*, which satisfies $f(t) \ge 0$ for all *t*. It is easy to see that f(t) is a quadratic polynomial of the form $at^2 + bt + c$ with a > 0. In fact,

$$f(t) = (t\mathbf{u} + \mathbf{v}) \cdot (t\mathbf{u} + \mathbf{v})$$

= $(t\mathbf{u}) \cdot (t\mathbf{u}) + (t\mathbf{u}) \cdot \mathbf{v} + \mathbf{v} \cdot (t\mathbf{u}) + \mathbf{v} \cdot \mathbf{v}$
= $\underbrace{\|\mathbf{u}\|^2}_{a} t^2 + \underbrace{2(\mathbf{u} \cdot \mathbf{v})}_{b} t + \underbrace{\|\mathbf{v}\|^2}_{c}.$

Now the discriminant $b^2 - 4ac$ of this quadratic polynomial cannot be positive since in that case f would have two distinct roots and any t between those roots would satisfy f(t) < 0, contrary to the fact that $f(t) \ge 0$ for all values of t. Thus,

$$b^2 - 4ac \le 0 \Longrightarrow 4(\mathbf{u} \cdot \mathbf{v})^2 - 4\|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \le 0 \Longrightarrow (\mathbf{u} \cdot \mathbf{v})^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$$

Taking the square roots of both sides, we obtain the Cauchy-Schwarz inequality.