Lemma. Let S be a subspace of \mathbb{R}^{n}. If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent vectors in S and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ span S, then $k \leq m$.

In other words, linearly independent sets cannot have more vectors than spanning sets.
Proof. Since $S=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$, each \mathbf{u}_{i} can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$:

$$
\begin{aligned}
& \mathbf{u}_{1}=a_{11} \mathbf{v}_{1}+a_{21} \mathbf{v}_{2}+\cdots+a_{m 1} \mathbf{v}_{m} \\
& \mathbf{u}_{2}=a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+\cdots+a_{m 2} \mathbf{v}_{m} \\
& \vdots \quad \vdots \quad \vdots \\
& \mathbf{u}_{k}=a_{1 k} \mathbf{v}_{1}+a_{2 k} \mathbf{v}_{2}+\cdots+a_{m k} \mathbf{v}_{m}
\end{aligned}
$$

Let us form the linear combination $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}$ by multiplying the first equation above by c_{1}, the second by c_{2}, \ldots, the k-th by c_{k}, and adding the results vertically:

$$
\begin{aligned}
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k} & =\left(a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 k} c_{k}\right) \mathbf{v}_{1} \\
& +\left(a_{21} c_{1}+a_{22} c_{2}+\cdots+a_{2 k} c_{k}\right) \mathbf{v}_{2} \\
& +\cdots \\
& +\left(a_{m 1} c_{1}+a_{m 2} c_{2}+\cdots+a_{m k} c_{k}\right) \mathbf{v}_{m}
\end{aligned}
$$

Setting the coefficients of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ in the above expression equal to zero, we obtain the following homogeneous system of m linear equations in k unknowns c_{1}, \ldots, c_{k} :

$$
\begin{gathered}
a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 k} c_{k}=0 \\
a_{21} c_{1}+a_{22} c_{2}+\cdots+a_{2 k} c_{k}=0 \\
\vdots \quad \vdots \quad \vdots \\
a_{m 1} c_{1}+a_{m 2} c_{2}+\cdots+a_{m k} c_{k}=0
\end{gathered}
$$

If $m<k$, there would be fewer equations than unknowns, so the system would have a non-trivial solution for c_{1}, \ldots, c_{k}. But for this solution we would have $c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}=0$ and this would contradict the assumption that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ are linearly independent. Thus $m<k$ cannot happen and we must have $k \leq m$.

