Lemma. Let *S* be a subspace of \mathbb{R}^n . If $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly independent vectors in *S* and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ span *S*, then $k \leq m$.

In other words, linearly independent sets cannot have more vectors than spanning sets.

Proof. Since $S = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, each \mathbf{u}_i can be written as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_m$:

$$u_{1} = a_{11} v_{1} + a_{21} v_{2} + \dots + a_{m1} v_{m}$$

$$u_{2} = a_{12} v_{1} + a_{22} v_{2} + \dots + a_{m2} v_{m}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$u_{k} = a_{1k} v_{1} + a_{2k} v_{2} + \dots + a_{mk} v_{m}$$

Let us form the linear combination $c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k$ by multiplying the first equation above by c_1 , the second by c_2 , ..., the *k*-th by c_k , and adding the results vertically:

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = (a_{11} c_1 + a_{12} c_2 + \dots + a_{1k} c_k) \mathbf{v}_1 + (a_{21} c_1 + a_{22} c_2 + \dots + a_{2k} c_k) \mathbf{v}_2 + \dots + (a_{m1} c_1 + a_{m2} c_2 + \dots + a_{mk} c_k) \mathbf{v}_m$$

Setting the coefficients of $\mathbf{v}_1, \ldots, \mathbf{v}_m$ in the above expression equal to zero, we obtain the following homogeneous system of *m* linear equations in *k* unknowns c_1, \ldots, c_k :

$$a_{11} c_1 + a_{12} c_2 + \dots + a_{1k} c_k = 0$$

$$a_{21} c_1 + a_{22} c_2 + \dots + a_{2k} c_k = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1} c_1 + a_{m2} c_2 + \dots + a_{mk} c_k = 0$$

If m < k, there would be fewer equations than unknowns, so the system would have a non-trivial solution for c_1, \ldots, c_k . But for this solution we would have $c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k = 0$ and this would contradict the assumption that $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly independent. Thus m < k cannot happen and we must have $k \le m$.