Math 231 Midterm 2 Review Sheet, 4/6/2024

Here is a list of the topics that could potentially be on the second midterm exam. Make sure you study each item carefully.

- Subspaces of \mathbb{R}^{n}; the concepts of basis and dimension for a subspace; coordinates of a vector relative to a basis.
- Let W be a subspace of \mathbb{R}^{n}. Then the size of any linearly independent set in W is at most the size of any spanning set for W. In particular, if $\operatorname{dim}(W)=k$, every linearly independent set in W has at most k vectors in it while every spanning set for W has at least k vectors in it.
- Basis Test: Consider n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ and put them as the columns of an $n \times n$ matrix A. Then,

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \text { is a basis for } \mathbb{R}^{n} \Longleftrightarrow A \text { is invertible } \Longleftrightarrow \operatorname{det}(A) \neq 0
$$

In this case, the coordinate vector of any $\mathbf{v} \in \mathbb{R}^{n}$ relative to $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is given by the solution of the system with the augmented matrix $[A \mid \mathbf{v}]$.

- The row space, column space and null space of a matrix; finding bases for these spaces by reducing to a row echelon form; definition of rank and nullity of a matrix; for any $m \times n$ matrix A,

$$
0 \leq \operatorname{rank}(A) \leq \min \{m, n\} \quad \text { and } \quad \operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

- Evaluating $\operatorname{det}(A)$ by the cofactor expansion formula along any row or column; determinant of a triangular matrix is the product of its main diagonal entries; $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$; $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$ if A is $n \times n ; \operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B) ; \operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A) ;$ Cramer's rule.
- Eigenvalues and eigenvectors of a square matrix; eigenvalues of a triangular matrix are its main diagonal entries; finding a basis for each eigenspace; algebraic vs. geometric multiplicity of an eigenvalue; if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A, then

$$
\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n} \quad \text { and } \quad \operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n}
$$

- The concept of similar matrices; diagonalizable matrices; an $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors (special case: if there are n distinct eigenvalues); given a diagonalizable matrix A how to find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$; two applications:
- Finding the k-th power of $A: A^{k}=P D^{k} P^{-1}$
- Suppose A is diagonalizable with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Then, for any vector \mathbf{v},

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \Longrightarrow A^{k} \mathbf{v}=c_{1} \lambda_{1}^{k} \mathbf{v}_{1}+\cdots+c_{n} \lambda_{n}^{k} \mathbf{v}_{n} .
$$

- Useful characterizations of invertibility: The following conditions on an $n \times n$ matrix A are equivalent:
- A is invertible
- The equation $A \mathbf{x}=\mathbf{0}$ has the unique solution $\mathbf{x}=\mathbf{0}$
- The equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$
- The RREF of A is the identity matrix I
- $\operatorname{det}(A) \neq 0$
- $\operatorname{rank}(A)=n$ and nullity $(A)=0$
- The rows (or columns) of A are linearly independent
- The rows (or columns) of A form a basis for \mathbb{R}^{n}
- The eigenvalues of A are non-zero

Practice Problems.

1. Verify that $\mathcal{B}=\left\{\left[\begin{array}{r}k \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ k\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2} no matter what k is. Then set $k=1$ and find the coordinate vector of $\left[\begin{array}{l}x \\ y\end{array}\right]$ relative to \mathcal{B}.
2. Consider the matrix $A=\left[\begin{array}{rrrr}3 & -1 & 2 & 0 \\ 1 & 0 & 2 & -1 \\ 5 & -1 & 6 & -2\end{array}\right]$.
(i) Find bases for $\operatorname{row}(A)$ and $\operatorname{col}(A)$ and $\operatorname{null}(A)$.
(ii) What are $\operatorname{rank}(A)$ and nullity (A) ?
3. For what values of x is the matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 1 & 6 \\ x & 3 & 2\end{array}\right]$ singular?
4. If $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=5$, what is $\left|\begin{array}{ccc}4 e & 4 d & 4 f \\ h & g & i \\ b-7 h & a-7 g & c-7 i\end{array}\right|$?
5. Solve the following system using Cramer's rule:

$$
\left\{\begin{array}{l}
2 x+4 y+6 z=18 \\
4 x+5 y+6 z=24 \\
3 x+y-2 z=4
\end{array}\right.
$$

6. Consider the matrix $A=\left[\begin{array}{lll}4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1\end{array}\right]$.
(i) Find the eigenvalues of A.
(ii) Find a basis for each eigenspace of A.
(iii) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
7. True or false?

- For every square matrix A we have $\operatorname{det}(2 A)=2 \operatorname{det}(A)$.
- It is impossible to find 5 vectors in \mathbb{R}^{4} whose span is \mathbb{R}^{4}.
- There is a 3×5 matrix whose rank is 4 .
- There is an invertible 2×2 matrix A with $\operatorname{det}(A-\lambda I)=\lambda^{2}-9 \lambda$.

