## Math $3^{28}$ Homework 3 <br> due on Thursday 2/20/20

Problem 1. Find the Fourier series of the following functions:
(i) $f(x)=\cos x,-\infty<x<+\infty$.
(ii) $f(x)=\cos x,-\frac{\pi}{2}<x<\frac{\pi}{2}, f(x+\pi)=f(x)$ for all $x$.
(iii) $f(x)=\left\{\begin{array}{ll}0 & -1<x<0 \\ x & 0<x<1\end{array}, \quad f(x+2)=f(x)\right.$ for all $x$.

Problem 2. Without computing the coefficients, explain why the Fourier series of the function

$$
f(x)=\left\{\begin{array}{rr}
0 & -L<x<0 \\
1 & 0<x<L
\end{array}, \quad f(x+2 L)=f(x) \text { for all } x\right.
$$

has no cosine term in it.

## Problem 3.

(i) Show that if $p(x)$ is a polynomial of degree $n$ and $g(x)$ is a continuous function, then
$\int p(x) g(x) d x=p(x) G_{1}(x)-p^{\prime}(x) G_{2}(x)+p^{\prime \prime}(x) G_{3}(x)-\cdots+(-1)^{n} p^{(n)}(x) G_{n+1}(x)$.
Here, $G_{1}$ is an antiderivative of $g, G_{2}$ is an antiderivative of $G_{1}$, etc. (Hint: Differentiate both sides with respect to $x$ ).
(ii) Use (i) to show that for any constant $\lambda \neq 0$,

$$
\int x^{3} \cos (\lambda x) d x=\frac{x^{3} \sin (\lambda x)}{\lambda}+\frac{3 x^{2} \cos (\lambda x)}{\lambda^{2}}-\frac{6 x \sin (\lambda x)}{\lambda^{3}}-\frac{6 \cos (\lambda x)}{\lambda^{4}} .
$$

(iii) Let $f(x)=x^{3}$ for $0<x<\pi$. Sketch the graph of the even $2 \pi$-periodic extension of $f$ over a few periods. Then use (ii) to compute the Fourier series of this extension.

