Math 3^{28} Homework 6

due on Friday 3/27/20

Problem 1. Consider the wave equation

$$
\begin{cases}u_{t t}=u_{x x} & 0 \leq x \leq 1, t \geq 0 \\ u(0, t)=u(1, t)=0 & t>0 \\ u(x, 0)=\sin (3 \pi x), u_{t}(x, 0)=\sin (2 \pi x) & 0 \leq x \leq 1\end{cases}
$$

Verify directly that the solution $u(x, t)$ given by separation of variables is the same as the one given by D'Alembert's formula.

Problem 2. Solve the wave equation

$$
\begin{cases}u_{t t}=u_{x x} & -\infty<x<\infty, t \geq 0 \\ u(x, 0)=e^{-x^{2}}, u_{t}(x, 0)=\frac{2}{x^{2}+1} & -\infty<x<\infty\end{cases}
$$

What is $\lim _{t \rightarrow \infty} u(x, t)$?
Problem 3. Consider the wave equation

$$
\begin{cases}u_{t t}=c^{2} u_{x x} & -\infty<x<\infty, t \geq 0 \\ u(x, 0)=f(x), u_{t}(x, 0)=g(x) & -\infty<x<\infty\end{cases}
$$

where the initial position f and velocity g are given smooth functions. Use D'Alembert's formula to verify the following statements:
(i) If f and g are even functions, so is the solution u :

$$
u(-x, t)=u(x, t) \quad \text { for all } x, t .
$$

Similarly, if f and g are odd functions, so is the solution u :

$$
u(-x, t)=-u(x, t) \quad \text { for all } x, t .
$$

(ii) If f and g are both p-periodic, so is the solution u :

$$
u(x+p, t)=u(x, t) \quad \text { for all } x, t .
$$

