A note on first order linear PDE's

February 4, 2020

First recall the simple case

$$
\begin{equation*}
a u_{x}+b u_{y}+c u=f(x, y), \tag{1}
\end{equation*}
$$

where a, b, c are constants and f is a smooth function of x, y.
Case 1. If one of the coefficients a or b is zero, then (1) essentially reduces to a first order linear ODE with respect to one of the variables x or y. For example, if $b=0$, then

$$
a u_{x}+c u=f
$$

which can be solved by multiplying each side by the integrating factor $\mu(x)=e^{c x / a}$ and taking the anti-derivative with respect to x.

Case 2. If both a, b are non-zero, the trick is to find appropriate new coordinates (z, w) for which the equation (1) transforms into one without the u_{w} term, so it can be treated as Case 1 above. To find such coordinates, note that $a u_{x}+b u_{y}$ is the directional derivative of u in the direction of the vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ at slope b / a. The lines parallel to \mathbf{v}, called the characteristic lines of the equation (1), are the solutions of the ODE

$$
\frac{d y}{d x}=\frac{b}{a}
$$

so they are of the form

$$
y=\frac{b}{a} x+\text { const } \Longrightarrow b x-a y=\text { const } .
$$

If we set $w=b x-a y$, it follows that the lines $w=$ const. are parallel to \mathbf{v} everywhere so $a u_{x}+b u_{y}$ will be proportional to the partial derivative u_{z}. This suggests that we choose the new coordinates as

$$
\left\{\begin{array} { l }
{ z = x } \\
{ w = b x - a y \quad \text { with the inverse } }
\end{array} \quad \left\{\begin{array}{l}
x=z \\
y=(b z-w) / a
\end{array}\right.\right.
$$

A brief computation then shows that (1) transforms into

$$
a u_{z}+c u=f(z,(b z-w) / a)
$$

which can be solved as in Case 1.
A similar idea can be used to solve the general first order linear PDE

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=f(x, y) . \tag{2}
\end{equation*}
$$

Here a, b, c, f are smooth functions of x, y. We look for new coordinates (z, w) which transform (2) into a simpler PDE involving only u_{z}. Now $a(x, y) u_{x}+b(x, y) u_{y}$ is the directional derivative of u in the direction of the vector field $\mathbf{v}(x, y)=a(x, y) \mathbf{i}+b(x, y) \mathbf{j}$
having the slope $b(x, y) / a(x, y)$ at each point (x, y). The curves that are tangent to $\mathbf{v}(x, y)$ everywhere, called the characteristic curves of the equation (2), are the solutions of the ODE

$$
\begin{equation*}
\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)} \tag{3}
\end{equation*}
$$

Suppose we can solve this ODE and represent the solutions as the level sets of a function $h(x, y)$, i.e., suppose that the solutions of (3) are of the form

$$
h(x, y)=\text { const. }
$$

If we set $w=h(x, y)$, it follows that the curves $w=$ const. are the characteristic curves, hence are tangent to $\mathbf{v}(x, y)$ everywhere, and $a(x, y) u_{x}+b(x, y) u_{y}$ will again be proportional to the partial derivative u_{z}. This suggests that we choose the new coordinates as

$$
\left\{\begin{array} { l l }
{ z = x } \\
{ w } & { = h (x , y) }
\end{array} \quad \text { with the inverse } \quad \left\{\begin{array}{ll}
x=z \\
y & =\hat{h}(z, w)
\end{array}\right.\right.
$$

The PDE (2) then transforms into

$$
\begin{equation*}
\hat{a}(z, w) u_{z}+\hat{c}(z, w) u=\hat{f}(z, w) \tag{4}
\end{equation*}
$$

where the new coefficients $\hat{a}(z, w)=a(z, \hat{h}(z, w)), \hat{c}(z, w)=c(z, \hat{h}(z, w)), \hat{f}(z, w)=$ $f(z, \hat{h}(z, w))$ are obtained by substituting z for x and $\hat{h}(z, w)$ for y into the functions a, c, f. To see this, first note that since $h(x, y)$ is constant along the solutions of (3),

$$
h_{x} d x+h_{y} d y=0 \Longrightarrow \frac{d y}{d x}=-\frac{h_{x}}{h_{y}}=\frac{b}{a} \Longrightarrow a h_{x}+b h_{y}=0
$$

Using $z_{x}=1, z_{y}=0, w_{x}=h_{x}, w_{y}=h_{y}$, we obtain

$$
\begin{aligned}
a u_{x}+b u_{y} & =a\left(u_{z} z_{x}+u_{w} w_{x}\right)+b\left(u_{z} z_{y}+u_{w} w_{y}\right) \\
& =a\left(u_{z}+u_{w} h_{x}\right)+b u_{w} h_{y} \\
& =a u_{z}+\left(a h_{x}+b h_{y}\right) u_{w} \\
& =a u_{z}
\end{aligned}
$$

Substituting this into (2) then gives (4).
As a simple example, let us solve the equation $u_{x}+3 y u_{y}-5 u=1$ subject to the condition $u(0, y)=\cos y$. The characteristic curves are the solutions to the ODE

$$
\frac{d y}{d x}=3 y
$$

so they have the form

$$
y=\text { const. } e^{3 x} \quad \text { or } \quad y e^{-3 x}=\text { const. }
$$

This suggests that we take

$$
\left\{\begin{array} { l l }
{ z = } & { x } \\
{ w = } & { y e ^ { - 3 x } }
\end{array} \quad \text { with the inverse } \quad \left\{\begin{array}{l}
x=z \\
y=w e^{3 z}
\end{array}\right.\right.
$$

The given PDE now transforms into

$$
u_{z}-5 u=1
$$

which can be solved as an ODE with respect to z :

$$
\begin{aligned}
e^{-5 z} u_{z}-5 e^{-5 z} u=e^{-5 z} & \Longrightarrow \frac{\partial}{\partial z}\left(e^{-5 z} u\right)=e^{-5 z} \\
& \Longrightarrow e^{-5 z} u=\int e^{-5 z} d z=-\frac{1}{5} e^{-5 z}+K(w) \\
& \Longrightarrow u(z, w)=-\frac{1}{5}+K(w) e^{5 z}
\end{aligned}
$$

where K is any C^{1} function. It follows that

$$
u(x, y)=-\frac{1}{5}+K\left(y e^{-3 x}\right) e^{5 x}
$$

Imposing the side condition $u(0, y)=\cos y$, we obtain

$$
-\frac{1}{5}+K(y)=\cos y \Longrightarrow K(y)=\cos y+\frac{1}{5}
$$

Thus,

$$
u(x, y)=-\frac{1}{5}+\left[\cos \left(y e^{-3 x}\right)+\frac{1}{5}\right] e^{5 x}
$$

