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First recall the simple case

(1) aux C buy C cu D f .x; y/;

where a; b; c are constants and f is a smooth function of x; y.

Case 1. If one of the coefficients a or b is zero, then (1) essentially reduces to a first order
linear ODE with respect to one of the variables x or y. For example, if b D 0, then

aux C cu D f

which can be solved by multiplying each side by the integrating factor �.x/ D ecx=a and
taking the anti-derivative with respect to x.

Case 2. If both a; b are non-zero, the trick is to find appropriate new coordinates .z; w/
for which the equation (1) transforms into one without the uw term, so it can be treated as
Case 1 above. To find such coordinates, note that aux C buy is the directional derivative of
u in the direction of the vector v D aiC bj at slope b=a. The lines parallel to v, called the
characteristic lines of the equation (1), are the solutions of the ODE

dy

dx
D
b

a

so they are of the form

y D
b

a
x C const: H) bx � ay D const:

If we set w D bx � ay, it follows that the lines w D const: are parallel to v everywhere so
aux C buy will be proportional to the partial derivative uz. This suggests that we choose
the new coordinates as(

z D x

w D bx � ay
with the inverse

(
x D z

y D .bz � w/=a:

A brief computation then shows that (1) transforms into

auz C cu D f .z; .bz � w/=a/

which can be solved as in Case 1.

A similar idea can be used to solve the general first order linear PDE

(2) a.x; y/ux C b.x; y/uy C c.x; y/u D f .x; y/:

Here a; b; c; f are smooth functions of x; y. We look for new coordinates .z; w/ which
transform (2) into a simpler PDE involving only uz. Now a.x; y/ux C b.x; y/uy is the
directional derivative of u in the direction of the vector field v.x; y/ D a.x; y/iC b.x; y/j
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having the slope b.x; y/=a.x; y/ at each point .x; y/. The curves that are tangent to v.x; y/
everywhere, called the characteristic curves of the equation (2), are the solutions of the
ODE

(3)
dy

dx
D
b.x; y/

a.x; y/
:

Suppose we can solve this ODE and represent the solutions as the level sets of a function
h.x; y/, i.e., suppose that the solutions of (3) are of the form

h.x; y/ D const:

If we set w D h.x; y/, it follows that the curves w D const: are the characteristic
curves, hence are tangent to v.x; y/ everywhere, and a.x; y/ux C b.x; y/uy will again be
proportional to the partial derivative uz. This suggests that we choose the new coordinates
as (

z D x

w D h.x; y/
with the inverse

(
x D z

y D Oh.z; w/:

The PDE (2) then transforms into

(4) Oa.z; w/uz C Oc.z; w/u D Of .z; w/;

where the new coefficients Oa.z; w/ D a.z; Oh.z; w//; Oc.z; w/ D c.z; Oh.z; w//; Of .z; w/ D

f .z; Oh.z; w// are obtained by substituting z for x and Oh.z; w/ for y into the functions
a; c; f . To see this, first note that since h.x; y/ is constant along the solutions of (3),

hxdx C hydy D 0 H)
dy

dx
D �

hx

hy

D
b

a
H) ahx C bhy D 0:

Using zx D 1; zy D 0;wx D hx; wy D hy , we obtain

aux C buy D a.uzzx C uwwx/C b.uzzy C uwwy/

D a.uz C uwhx/C buwhy

D auz C .ahx C bhy/uw

D auz

Substituting this into (2) then gives (4).

As a simple example, let us solve the equation ux C 3yuy � 5u D 1 subject to the
condition u.0; y/ D cosy. The characteristic curves are the solutions to the ODE

dy

dx
D 3y

so they have the form

y D const: e3x or ye�3x
D const:
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This suggests that we take(
z D x

w D ye�3x
with the inverse

(
x D z

y D we3z:

The given PDE now transforms into

uz � 5u D 1

which can be solved as an ODE with respect to z:

e�5zuz � 5e
�5zu D e�5z

H)
@

@z
.e�5zu/ D e�5z

H) e�5zu D

Z
e�5z dz D �

1

5
e�5z
CK.w/

H) u.z; w/ D �
1

5
CK.w/e5z;

where K is any C 1 function. It follows that

u.x; y/ D �
1

5
CK.ye�3x/e5x:

Imposing the side condition u.0; y/ D cosy, we obtain

�
1

5
CK.y/ D cosy H) K.y/ D cosy C

1

5
:

Thus,

u.x; y/ D �
1

5
C

�
cos.ye�3x/C

1

5

�
e5x:


