MATH 360 Take-Home Exam I

- Total points: 20
- Solutions must be written completely, carefully and clearly.
- You are not allowed to share your ideas or solutions with others, but you may use your notes or any book on the subject. - The deadline is $12: 00 \mathrm{pm}$ of Friday 10/19. Hand in your exams to me at DRL 4N59, or simply slip it under the door in case I'm not there.

Problem 1. [4 points] Let $A \subset \mathbb{R}$ be a non-empty set which is bounded above. Define $B=\{x \in \mathbb{R}:-x \in A\}$. Show that

$$
\inf (B)=-\sup (A)
$$

Problem 2. [4 points] Show by induction that for every $n \in \mathbb{N}$

$$
\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Problem 3. [4 points] Suppose $\left\{x_{n}\right\}$ is a sequence of positive real numbers which is not bounded. Prove that the sequence $\left\{1 / x_{n}\right\}$ has a subsequence which converges to zero. Show by an example that the sequence $\left\{1 / x_{n}\right\}$ itself may not converge to zero.
Problem 4. [8 points] Each of the following statements is either true or false. Make a decision in each case, and convince me that your decision is right.
(i) If $|x+y| \leq 2$, then either $|x|$ or $|y|$ is at most 1 .
(ii) No polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree 4 can be one-to-one (a polynomial of degree 4 has the form $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, where a, b, c, d, e are real numbers and $a \neq 0$).
(iii) If $\left\{x_{n}\right\}$ is a sequence in \mathbb{R} such that $\left|x_{n}-1\right|<1$ for all n, then $\left\{x_{n}\right\}$ has a cluster point in the interval $[0,2]$.
(iv) The sequence $\left\{x_{n}\right\}$ defined by $x_{n}=\sqrt{n+1}-\sqrt{n}$ does not converge.

