MATH 360 Take-Home Exam II

- Total points: 20
- Solutions must be written completely, carefully and clearly.
- You are not allowed to share your ideas or solutions with others, but you may use your notes or any book on the subject. - The deadline is $12: 00 \mathrm{pm}$ of Friday $11 / 16$. Hand in your exams to me at DRL 4 N 59 , or simply slip it under the door in case I'm not there.

Problem 1. [4 points] Let $A \subset \mathbb{R}$ be non-empty and b be an upper bound for A. Prove that $b=\sup A$ if and only if $b \in \bar{A}$.
Problem 2. [4 points] Let $\mathbb{Q}^{3} \subset \mathbb{R}^{3}$ be the set of all vectors whose three coordinates are rational numbers. Given any $x \in \mathbb{R}^{3}$ and any $\varepsilon>0$, show that there is some $y \in \mathbb{Q}^{3}$ such that $\|x-y\|<\varepsilon$. Here $\|\cdot\|$ is the usual distance in \mathbb{R}^{3}.
Problem 3. [4 points] Consider the real line \mathbb{R} equipped with the discrete metric

$$
d(x, y):= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

Prove that in this metric the set of integers $\mathbb{Z} \subset \mathbb{R}$ is bounded and closed but it is not compact. (This shows that the Heine-Borel theorem does not necessarily hold in every metric space.)
Problem 4. [8 points] Each of the following statements is either true or false. Make a decision in each case, and convince me that your decision is right.
(i) The set $\mathbb{Q} \subset \mathbb{R}$ of rational numbers is closed.
(ii) If $\|\cdot\|$ is any norm on the real line \mathbb{R}, then there is a positive constant C such that $\|x\|=C|x|$ for all $x \in \mathbb{R}$.
(iii) There exists a non-empty open set $A \subset \mathbb{R}^{2}$ such that $\bar{A}=\partial A$.
(iv) There are 5 compact sets $A_{1}, A_{2}, \ldots, A_{5} \subset \mathbb{R}$ such that $A_{1} \cup A_{2} \cup \cdots \cup A_{5}=\mathbb{R}$.

