MATH 360 Final Exam

December 15, 2001

- Total points: 80
- Solutions must be written completely, carefully and clearly. You must justify all your claims. If you are referring to a RESULT THAT HAS ALREADY BEEN PROVED IN CLASS, STATE THAT RESULT CLEARLY.
- You are not allowed to share your ideas or solutions with othERS, BUT YOU MAY USE YOUR NOTES OR ANY BOOK ON THE SUBJECT.
- The exam is due 10:00 am of Monday $12 / 17$. Hand in your work to me at DRL 4N59, or Simply Slip it under the door in case I am not there. Solutions will not be accepted after the due time.

Problem 1. [4 points] Suppose x and y are real numbers such that $|x-y|<|x|$. Show that $x y>0$.
Problem 2. [5 points] Let $\left\{x_{n}\right\}_{n \geq 1}$ be any sequence in [0, 1]. Define a new sequence $\left\{y_{n}\right\}_{n \geq 1}$ by

$$
y_{n}=\max _{1 \leq i \leq n} x_{i} .
$$

Prove that $\left\{y_{n}\right\}_{n \geq 1}$ converges.
Problem 3. [5 points] Let X and Y be two sets, $f: X \rightarrow Y$ be a map and $A \subset Y$. Show that $f\left(f^{-1}(A)\right) \subset A$. Show that if f is onto, then $f\left(f^{-1}(A)\right)=A$.
Problem 4. [8 points] Let A and B be non-empty sets in a metric space. Show that

$$
\overline{A \cap B} \subset \bar{A} \cap \bar{B} .
$$

Show by an example that the above inclusion can be proper.
Problem 5. [9 points] Provide an example for
(i) A continuous map $f: X \rightarrow Y$ and an open set $A \subset X$ such that the image $f(A) \subset Y$ is not open.
(ii) A continuous map $f: X \rightarrow Y$ and a disconnected set $A \subset X$ such that the image $f(A) \subset Y$ is connected.
(iii) A continuous map $f: X \rightarrow Y$ and a compact set $A \subset Y$ such that the preimage $f^{-1}(A) \subset X$ is not compact.

Problem 6. [8 points] Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence of non-zero vectors in \mathbb{R}^{n} such that

$$
\lim _{n \rightarrow \infty} \frac{\left\|x_{n+1}\right\|}{\left\|x_{n}\right\|}=\frac{1}{2} .
$$

Show that $\left\{x_{n}\right\}$ converges to the origin $0 \in \mathbb{R}^{n}$. (Hint: Choose any $\frac{1}{2}<\lambda<1$ and observe that $\left\|x_{n+1}\right\| /\left\|x_{n}\right\|<\lambda$ for all sufficiently large n.)
Problem 7. [6 points] Show that for every integer n, there exists a point x such that $|x-n \pi|<\frac{\pi}{2}$ and $x=\tan x$.
Problem 8. [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}
$$

Find all points at which f is continuous.
Problem 9. [10 points] Let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$, and the induced norm $\|x\|=\sqrt{\langle x, x\rangle}$. Fix two vectors $x, y \in V$. Suppose $\|x-t y\|$ takes its minimum value over all $t \in \mathbb{R}$ exactly when $t=0$. Show that $\langle x, y\rangle=0$.
Problem 10. [15 points] Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $f(0)=f(1)$.
(i) Show that there exists an x such that $f(x)=f\left(x+\frac{1}{2}\right)$.
(ii) Let n be any natural number. Show that there exists an x such that $f(x)=$ $f\left(x+\frac{1}{n}\right)$.
(iii) [Bonus problem] Let $0<a<1$ be a real number which is not equal to $\frac{1}{n}$ for any natural number n. Show that there is a continuous function $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=f(1)$ such that $f(x) \neq f(x+a)$ for all x.
(Hint: For the first part, consider the continuous function $g(x)=f\left(x+\frac{1}{2}\right)-f(x)$ and assume it never vanishes to get a contradiction.)

