MATH 360 Homework 2

What makes the Universe so hard to comprehend is that there is nothing to compare it with.

Problem 1. (a) What is the intersection

$$
\bigcap_{n=1}^{\infty}\left(-\infty, \frac{1}{n}\right] ?
$$

Prove your claim carefully.
(b) Use the result of (a) and DeMorgan's Laws to find

$$
\left(\bigcup_{n=1}^{\infty}\left(\frac{1}{n},+\infty\right)\right)^{c}=\mathbb{R} \backslash\left(\bigcup_{n=1}^{\infty}\left(\frac{1}{n},+\infty\right)\right)
$$

Problem 2. Define a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(n)=2 n-1$. Is f one-to-one (injective)? Is f onto (surjective)? If $E \subset \mathbb{Z}$ is the set of even integers (positive or negative or zero), what is the preimage $f^{-1}(E)$?

Problem 3. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}+1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

(f is usually called the sign function.) Let A be the interval $(-2,1)$ in \mathbb{R}. Find the image $f(A)$ and the preimage $f^{-1}(A)$.

Problem 4. Recall that $\mathbb{Z} \times \mathbb{Z}$ is the set of all ordered pairs (m, n) where both m and n are integers. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by $f(m, n)=m+n$. Is f one-to-one? Is f onto?

Problem 5. Let $f: S \rightarrow T$ be a function and $A_{n} \subset T$ for all $n=1,2,3, \ldots$ Prove that

$$
f^{-1}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\bigcap_{n=1}^{\infty} f^{-1}\left(A_{n}\right)
$$

Problem 6. Let S be the set of all polynomials of the form $p(x)=a x^{2}+b x+c$ and T be the set of all polynomials of the form $q(x)=r x+s$. Here a, b, c, r, s can be arbitrary real numbers. Let $D: S \rightarrow T$ be the "differentiation" mapping defined by $D(p)=p^{\prime}$. Here p^{\prime} is the derivative of p with respect to x. Is D one-to-one? Is D onto?

Problem 7. Show that the set \mathbb{N} of natural numbers and the set $\mathbb{N} \times \mathbb{N}$ (which by definition consists of all pairs of natural numbers of the form (m, n)) have the same power. (Hint: To do this, you must find a bijective map $f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. It might be hard to find a formula for such a function. Instead, you can describe a way of "labeling" pairs in $\mathbb{N} \times \mathbb{N}$ by natural numbers. You may find it useful to describe this on a picture of $\mathbb{N} \times \mathbb{N}$.)

Reading assignments. Read pages 1-11 of Boas's A primer of real functions up to the end of exercise 3.3. Make sure you think about its exercises.

