MATH 360 Homework 3

Radioactive cats have 18 half-lives.

Problem 1. For the following sets $S \subset \mathbb{R}$, find all the upper bounds (if any) and the least upper bound $\sup (S)$:

- $S=\left\{n+(-1)^{n}: n \in \mathbb{N}\right\}$
- $S=\left\{x \in \mathbb{Q}: 1 \leq x^{2}<5\right\}$
- $S=\{-k: k \in \mathbb{N}\}$
- $S=\{a, b, c\}$, where $a>b>c$.

Problem 2. Let A and B be non-empty subsets of the real line which are bounded from above (so that their supremums exist). Suppose that for every $x \in A$ you can find a $y \in B$ such that $x \leq y$. Show that $\sup (A) \leq \sup (B)$.

Problem 3. Let $S \subset \mathbb{R}$ be non-empty. When should we call S bounded from below? Formulate the definition of a lower bound for S. Formulate the definition for the greatest lower bound of S. The greatest lower bound of S is often denoted by $\inf (S)$ (the "infimum of S "). When should we set $\inf (S)=-\infty$? Show that if $M=\inf (S) \in \mathbb{R}$, then for every $\varepsilon>0$ we can find some $x \in S$ such that $M \leq x<M+\varepsilon$.

Problem 4. Show that for all real numbers x and y we have

$$
||x|-|y|| \leq|x-y|
$$

This says that the distance between $|x|$ and $|y|$ is less than or equal to the distance between x and y. (Hint: You should prove the two inequalities $-|x-y| \leq|x|-|y| \leq$ $|x-y|$. Both follow from the triangle inequality $|a+b| \leq|a|+|b|$ if you choose a and b cleverly.)

Problem 5. Show that the real line has the Archimedean property in the following sense: "Given any $x>0$ there exists a natural number n such that $0<x<n$." (Admittedly this looks ridiculously simple, because we are so used to our intuition of numbers that we take this property for granted; Amazingly there are ordered fields -noncomplete of course- which do not have this property! See problem 47 page 102 of Marsden-Hoffman for such an example. The Archimedean property follows from completeness axiom for \mathbb{R}. Here is a hint for you: If the property fails, there must be a number $x>0$ such that every natural number n satisfies $n \leq x$. So x will be an upper bound for \mathbb{N}. Then, by the completeness axiom, \mathbb{N} must have a supremum. Now draw a contradiction.)

Problem 6. Use mathematical induction to prove that for every natural number $n \geq 8$, we have $n<(1.3)^{n}$.

Problem 7. Use mathematical induction to prove that the sequence

$$
\left\{x_{n}=\frac{2^{n}}{n!}\right\}_{n \geq 1}
$$

is monotonically decreasing.

