Math 360 Homework 4

I don't have any solution but I certainly admire the problem.

Problem 1. Use mathematical induction to show that for every integer $n \geq 1$, the number $n^{3}+(n+1)^{3}+(n+2)^{3}$ is a multiple of 9 .
Problem 2. (a) Give an example of a non-convergent sequence in \mathbb{R} which is bounded.
(b) Give an example of a non-convergent sequence $\left\{x_{n}\right\}$ in \mathbb{R} such that the sequence $\left\{\left|x_{n}\right|\right\}$ is convergent.
Problem 3. Use the definition of limit to show that
(a) $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$
(b) $\lim _{n \rightarrow \infty} \frac{3 n}{2 n+1}=\frac{3}{2}$

Problem 4. Show that if $\lim _{n \rightarrow \infty} x_{n}=L$, then $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|L|$. (Hint: Use the definition of limit and the inequality $||a|-|b|| \leq|a-b|$.)
Problem 5. (a) Show that for all $n \geq 1$,

$$
0<\frac{3^{n}}{n!} \leq 65 \cdot \frac{1}{2^{n}}
$$

(Hint: Check the right inequality by hand for $1 \leq n \leq 5$, and by mathematical induction for $n>5$.)
(b) Using part (a) and the fact that $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$ (problem 3(a)), show that $\lim _{n \rightarrow \infty} \frac{3^{n}}{n!}$ exists and find its value.
Problem 6. Define a sequence $\left\{x_{n}\right\}$ in \mathbb{R} by setting $x_{1}=\frac{1}{2}$, and $x_{n+1}=\sqrt{x_{n}}$ for every $n \geq 1$. Show that $\left\{x_{n}\right\}$ converges. (Hint: Argue that this sequence is increasing and bounded above.) Can you guess what $\lim _{n \rightarrow \infty} x_{n}$ is?
Problem 7. Suppose that the sequence $\left\{x_{n}\right\}$ in \mathbb{R} satisfies $\left|x_{n+1}-x_{n}\right| \leq \frac{1}{3^{n}}$ for all $n \geq 1$. Prove that $\left\{x_{n}\right\}$ converges. (Hint: Show that $\left\{x_{n}\right\}$ is a Cauchy sequence.)

