MATH 360 Homework 5

Friends come and go but enemies accumulate.

Problem 1. (a) Give an example of an unbounded sequence $\{x_n\}$ in \mathbb{R} which has a subsequence converging to 0.

(b) Give an example of a sequence $\{x_n\}$ in \mathbb{R} which has 3 subsequences converging to -1, 1, and 5.

Problem 2. Show that the sequence $x_n = 2e^{\cos(3n)}$, $n = 1, 2, 3, \ldots$, has a convergent subsequence.

Problem 3. Let $\{x_n\}$ be a sequence in \mathbb{R} which converges to L. Suppose that $\{y_n\}$ is another sequence in \mathbb{R} with the property that $|x_n - y_n| \leq \frac{1}{n^2}$ for all n. Prove that $\{y_n\}$ converges to L also.

Problem 4. Let 0 < a < 1 and $\{x_n\}$ be a sequence in \mathbb{R} with the property that

$$|x_n - x_{n-1}| \le a|x_{n-1} - x_{n-2}|$$

for all $n \geq 3$.

(a) Show that for all $n \ge 3$,

$$|x_n - x_{n-1}| \le a^{n-2} |x_2 - x_1|.$$

(b) Conclude from (a) that $\{x_n\}$ is a Cauchy sequence. (Hint: It follows from (a) and the triangle inequality that if $3 \le m < n$, then

$$|x_n - x_m| \le (a^{n-2} + \dots + a^{m-1})|x_2 - x_1|$$

= $\frac{a^{m-1} - a^{n-1}}{1 - a}|x_2 - x_1|$
 $\le a^{m-1}\frac{|x_2 - x_1|}{1 - a}$
= $a^m \frac{|x_2 - x_1|}{a(1 - a)}.$

Since 0 < a < 1, a^m can be made arbitrarily small if m is large enough.)

Problem 5. Let x_1 and x_2 be distinct real numbers and for $n \ge 3$ define

$$x_n = \frac{1}{2}(x_{n-1} + x_{n-2}).$$

In other words, every member of the sequence beginning with x_3 is the average of the two previous members. Show that $\{x_n\}$ is a Cauchy sequence, and conclude that $\lim_{n\to\infty} x_n$ exists. (Hint: To get an idea, draw a picture and use the fact that the average of two points $a, b \in \mathbb{R}$ is the midpoint of the segment [a, b]. To prove the result carefully, note that

$$|x_n - x_{n-1}| = \frac{1}{2}|x_{n-1} - x_{n-2}|$$

and apply the result of Problem 4.)

Problem 6. Give an example of a sequence $\{x_n\}$ in \mathbb{R} such that $\inf\{x_n\} = 0$ but $\liminf_{n\to\infty} x_n = 1$.

Problem 7. True or false: If $\limsup_{n\to\infty} x_n = 2$, then $x_n > 1.99$ for all *n* large enough.