MATH 360 Homework 5

Friends come and go but enemies accumulate.

Problem 1. (a) Give an example of an unbounded sequence $\left\{x_{n}\right\}$ in \mathbb{R} which has a subsequence converging to 0 .
(b) Give an example of a sequence $\left\{x_{n}\right\}$ in \mathbb{R} which has 3 subsequences converging to $-1,1$, and 5 .

Problem 2. Show that the sequence $x_{n}=2 e^{\cos (3 n)}, n=1,2,3, \ldots$, has a convergent subsequence.

Problem 3. Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R} which converges to L. Suppose that $\left\{y_{n}\right\}$ is another sequence in \mathbb{R} with the property that $\left|x_{n}-y_{n}\right| \leq \frac{1}{n^{2}}$ for all n. Prove that $\left\{y_{n}\right\}$ converges to L also.

Problem 4. Let $0<a<1$ and $\left\{x_{n}\right\}$ be a sequence in \mathbb{R} with the property that

$$
\left|x_{n}-x_{n-1}\right| \leq a\left|x_{n-1}-x_{n-2}\right|
$$

for all $n \geq 3$.
(a) Show that for all $n \geq 3$,

$$
\left|x_{n}-x_{n-1}\right| \leq a^{n-2}\left|x_{2}-x_{1}\right| .
$$

(b) Conclude from (a) that $\left\{x_{n}\right\}$ is a Cauchy sequence. (Hint: It follows from (a) and the triangle inequality that if $3 \leq m<n$, then

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left(a^{n-2}+\cdots+a^{m-1}\right)\left|x_{2}-x_{1}\right| \\
& =\frac{a^{m-1}-a^{n-1}}{1-a}\left|x_{2}-x_{1}\right| \\
& \leq a^{m-1} \frac{\left|x_{2}-x_{1}\right|}{1-a} \\
& =a^{m} \frac{\left|x_{2}-x_{1}\right|}{a(1-a)} .
\end{aligned}
$$

Since $0<a<1$, a^{m} can be made arbitrarily small if m is large enough.)

Problem 5. Let x_{1} and x_{2} be distinct real numbers and for $n \geq 3$ define

$$
x_{n}=\frac{1}{2}\left(x_{n-1}+x_{n-2}\right) .
$$

In other words, every member of the sequence beginning with x_{3} is the average of the two previous members. Show that $\left\{x_{n}\right\}$ is a Cauchy sequence, and conclude that $\lim _{n \rightarrow \infty} x_{n}$ exists. (Hint: To get an idea, draw a picture and use the fact that the average of two points $a, b \in \mathbb{R}$ is the midpoint of the segment $[a, b]$. To prove the result carefully, note that

$$
\left|x_{n}-x_{n-1}\right|=\frac{1}{2}\left|x_{n-1}-x_{n-2}\right|
$$

and apply the result of Problem 4.)
Problem 6. Give an example of a sequence $\left\{x_{n}\right\}$ in \mathbb{R} such that $\inf \left\{x_{n}\right\}=0$ but $\liminf _{n \rightarrow \infty} x_{n}=1$.

Problem 7. True or false: If $\lim \sup _{n \rightarrow \infty} x_{n}=2$, then $x_{n}>1.99$ for all n large enough.

