Math 360 Homework 7

Q: How's a door different from a set?
A: A door is either open or closed, but a set can be neither.

Note: Unless otherwise stated, the metric on \mathbb{R}^{n} is assumed to be standard.
Problem 1. Let X be the space of all binary words of length 4, i.e., elements of X are of the form $x=x_{1} x_{2} x_{3} x_{4}$, where the x_{i} are either 0 or 1 ; thus X has $2^{4}=16$ elements. Equip X with the word metric

$$
d(x, y)=\sum_{i=1}^{4}\left|x_{i}-y_{i}\right|
$$

Let $x:=0011 \in X$. Describe the balls $B(x, r)$ for $r=1,2,3,4,5$.
Problem 2. Let (X, d) be a metric space. Define $\rho: X \times X \rightarrow \mathbb{R}$ by

$$
\rho(x, y):=\frac{d(x, y)}{1+d(x, y)}
$$

Show that ρ is a metric on X. Note that the ρ-distance between any two points is less than 1.
Problem 3. Describe the ball $B\left(x_{0}, 1\right)$ in
(a) \mathbb{R}^{2} with $x_{0}=(0,0)$ and with the metric $d(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$.
(b) \mathbb{R} with $x_{0}=-1$ and with the metric $\rho(x, y)=\frac{|x-y|}{1+|x-y|}$.

Problem 4. Let $U \subset \mathbb{R}$ be non-empty and open. Show that

$$
U \times \mathbb{R}=\left\{(x, y) \in \mathbb{R}^{2}: x \in U\right\}
$$

is an open subset of \mathbb{R}^{2}. (Hint: To get the idea, first consider the case where U is an open interval and draw a picture of $U \times \mathbb{R}$. The general case should be easy then.)
Problem 5. Let $A \subset \mathbb{R}^{n}$ be any non-empty set. For any $r>0$, let $N_{r}(A)$ denote the r-neighborhood of A, which by definition is the set of all points in \mathbb{R}^{n} whose distance to some point of A is less than r :

$$
N_{r}(A):=\left\{y \in \mathbb{R}^{n}: d(x, y)<r \text { for some } x \in A\right\} .
$$

Evidently, $A \subset N_{r}(A)$.
(a) What is $N_{r}(A)$ if A is a single point $\{x\}$?
(b) If A is the closed segment $\left\{(x, 0) \in \mathbb{R}^{2}:-1 \leq x \leq 1\right\}$, can you draw a picture of $N_{r}(A)$? What would be the shape of $N_{r}(A)$ if A were the closed square $[-1,1] \times[-1,1]$ in the plane?
(c) Prove that for any non-empty set $A \subset \mathbb{R}^{n}, N_{r}(A)$ is always open.

Problem 6. Let $A_{1}, A_{2}, A_{3}, \ldots$ be subsets of a metric space.
(a) If $B=\bigcup_{i=1}^{n} A_{i}$, show that $\bar{B}=\bigcup_{i=1}^{n} \overline{A_{i}}$.
(b) If $B=\bigcup_{i=1}^{\infty} A_{i}$, show that $\bar{B} \supset \bigcup_{i=1}^{\infty} \overline{A_{i}}$.

Show by an example that in case (b) the inclusion may be proper (i.e., \bar{B} may actually be bigger than $\left.\bigcup_{i=1}^{\infty} \overline{A_{i}}\right)$.
Problem 7. Let $A \subset \mathbb{R}$ satisfies $\partial A=\emptyset$. Prove that $A=\emptyset$ or $A=\mathbb{R}$.

Reading assignment: Have a quart of your favorite Haagen Dazs flavor while taking a bubble bath, then read Boas's A primer of real functions from page 21 (4. Metric spaces ...) to page 32 (If we look for ...) and watch what happens.

