MATH 360 Homework 8

Of course there is no reason why the union of open sets should be open; it is just our department's policy.

Problem 1. For a non-empty subset A of a metric space M, determine which of the following statements are true (If you believe it is true, prove it; if not, give a counterexample):
(i) $\operatorname{int}(\bar{A})=\operatorname{int}(A)$
(ii) $\bar{A} \cap A=A$
(iii) $\overline{\operatorname{int}(A)}=A$
(iv) $\partial(\bar{A})=\partial A$
(v) If A is open, then $\partial A \subset M \backslash A$.

Problem 2. Let M be the set consisting of only two letters a and b, and let d be the discrete metric on M, i.e.,

$$
d(a, b)=1, d(a, a)=d(b, b)=0
$$

Which sequences $\left\{x_{n}\right\}$ in M are convergent?
Problem 3. Let M be the real line \mathbb{R} but instead of the standard metric $d(x, y)=$ $|x-y|$ consider the discrete metric

$$
d(x, y)= \begin{cases}1 & x \neq y \\ 0 & x=y\end{cases}
$$

on M. Does the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ converge in this metric space? Can you determine which sequences $\left\{x_{n}\right\}$ converge in this metric space?

Problem 4. Let A be a non-empty set in a metric space (M, d). For a point $x \in M$, define the distance between x and A, denoted by $d(x, A)$, as the infimum of the set of all distances $d(x, a)$, where a runs through the set A :

$$
d(x, A)=\inf _{a \in A} d(x, a)
$$

Prove that
(i) There exists a sequence $a_{n} \in A$ such that $d\left(x, a_{n}\right) \rightarrow d(x, A)$ as $n \rightarrow \infty$.
(ii) $d(x, A)=0$ if and only if x is in the closure of A.
(iii) In general, there may not be a point $a \in A$ with $d(x, A)=d(x, a)$. (Hint: Look at the case $A=D(0,1) \subset \mathbb{R}^{2}$.)

Problem 5. Prove directly from the definition that the open unit ball $D(0,1)$ in \mathbb{R}^{3} is not compact. To do this, you must find a cover of $D(0,1)$ by infinitely many open sets which has no finite subcover.

Problem 6. Is it true that the union of any number of compact sets is compact? What about the union of a finite number of compact sets? (Hint: To answer the second question, first consider the union of two compact sets.)

Problem 7. Let K be a compact set in a metric space M and let $A \subset K$ be closed. Prove that A is compact. (Hint: For any open cover $\left\{U_{i}\right\}$ of A, the collection $\left\{U_{i}\right\} \cup(M \backslash A)$ is an open cover of K.)

