MATH 360 Homework 8

Of course there is no reason why the union of open sets should be open; it is just our department's policy.

Problem 1. For a non-empty subset A of a metric space M, determine which of the following statements are true (If you believe it is true, prove it; if not, give a counterexample):

(i) $\operatorname{int}(\overline{A}) = \operatorname{int}(A)$ (ii) $\overline{A} \cap A = A$ (iii) $\operatorname{\overline{int}}(A) = A$ (iv) $\partial(\overline{A}) = \partial A$ (v) If A is open, then $\partial A \subset M \smallsetminus A$.

Problem 2. Let M be the set consisting of only two letters a and b, and let d be the discrete metric on M, i.e.,

$$d(a,b) = 1, \ d(a,a) = d(b,b) = 0.$$

Which sequences $\{x_n\}$ in M are convergent?

Problem 3. Let *M* be the real line \mathbb{R} but instead of the standard metric d(x, y) = |x - y| consider the discrete metric

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

on *M*. Does the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ converge in this metric space? Can you determine which sequences $\{x_n\}$ converge in this metric space?

Problem 4. Let A be a non-empty set in a metric space (M, d). For a point $x \in M$, define the *distance between* x and A, denoted by d(x, A), as the infimum of the set of all distances d(x, a), where a runs through the set A:

$$d(x, A) = \inf_{a \in A} d(x, a).$$

Prove that

(i) There exists a sequence $a_n \in A$ such that $d(x, a_n) \to d(x, A)$ as $n \to \infty$.

(ii) d(x, A) = 0 if and only if x is in the closure of A.

(iii) In general, there may not be a point $a \in A$ with d(x, A) = d(x, a). (Hint: Look at the case $A = D(0, 1) \subset \mathbb{R}^2$.)

Problem 5. Prove directly from the definition that the open unit ball D(0,1) in \mathbb{R}^3 is *not* compact. To do this, you must find a cover of D(0,1) by infinitely many open sets which has no finite subcover.

Problem 6. Is it true that the union of any number of compact sets is compact? What about the union of a finite number of compact sets? (Hint: To answer the second question, first consider the union of two compact sets.)

Problem 7. Let K be a compact set in a metric space M and let $A \subset K$ be closed. Prove that A is compact. (Hint: For any open cover $\{U_i\}$ of A, the collection $\{U_i\} \cup (M \setminus A)$ is an open cover of K.)