Math 360 Homework 9

An unbounded set goes off to infinity, or at least the end of the blackboard.

Problem 1. Decide whether or not each of the following sets is compact:

- (i) $A = \{x \in \mathbb{R} : x x^2 > 0\}$
- (ii) $A = \{\frac{1}{n^2+3} : n \in \mathbb{N}\} \cup \{0\}$
- (iii) $A = \{x \in \mathbb{R}^n : 1 \le ||x|| \le 2\}$
- (iv) $A = \bigcup_{n=1}^{\infty} R_n$, where R_n is the rectangle $\left[\frac{1}{n+1}, \frac{1}{n}\right] \times \left[-\frac{1}{n}, \frac{1}{n}\right]$ in the plane \mathbb{R}^2 .
- (v) A is the surface of a sphere in \mathbb{R}^3 with the north and south poles removed.

Problem 2. Let K be any finite set of points in a metric space. Using the definition of compactness (in terms of open covers) show that K is compact.

Problem 3. Let $\{x_n\}$ be a sequence of distinct points in a metric space which converges to some x. Assume $x_n \neq x$ for all n. Show that the set $A = \{x_1, x_2, x_3, \ldots\}$ is not compact.

Problem 4. Let $\{x_n\}$ and x be as in the previous problem, but this time define $A = \{x_1, x_2, x_3, \ldots\} \cup \{x\}$. Show that A is compact. (Hint: For any open cover of A, some open set must contain x and hence the x_n for all large n.)

Problem 5. Decide whether or not each of the following sets is path-connected:

- (i) $A = [0, 1[\cup]1, 2]$ in \mathbb{R} .
- (ii) A is the union of all circles centered at (0,0) in the plane \mathbb{R}^2 whose radii are rational numbers.
- (iii) $A = \{x \in \mathbb{R}^3 : 1 \le ||x|| \le 2\}$

Problem 6. Let $U \subset \mathbb{R}^2$ be open and path-connected. Remove finitely many points from U and call the resulting set V. Show that V is still path-connected.

Problem 7. Suppose A and B are connected sets in a metric space such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is connected.