Math 360 Homework 9

An unbounded set goes off to infinity, or at least the end of the blackboard.

Problem 1. Decide whether or not each of the following sets is compact:
(i) $A=\left\{x \in \mathbb{R}: x-x^{2}>0\right\}$
(ii) $A=\left\{\frac{1}{n^{2}+3}: n \in \mathbb{N}\right\} \cup\{0\}$
(iii) $A=\left\{x \in \mathbb{R}^{n}: 1 \leq\|x\| \leq 2\right\}$
(iv) $A=\bigcup_{n=1}^{\infty} R_{n}$, where R_{n} is the rectangle $\left[\frac{1}{n+1}, \frac{1}{n}\right] \times\left[-\frac{1}{n}, \frac{1}{n}\right]$ in the plane \mathbb{R}^{2}.
(v) A is the surface of a sphere in \mathbb{R}^{3} with the north and south poles removed.

Problem 2. Let K be any finite set of points in a metric space. Using the definition of compactness (in terms of open covers) show that K is compact.
Problem 3. Let $\left\{x_{n}\right\}$ be a sequence of distinct points in a metric space which converges to some x. Assume $x_{n} \neq x$ for all n. Show that the set $A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is not compact.
Problem 4. Let $\left\{x_{n}\right\}$ and x be as in the previous problem, but this time define $A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \cup\{x\}$. Show that A is compact. (Hint: For any open cover of A, some open set must contain x and hence the x_{n} for all large n.)
Problem 5. Decide whether or not each of the following sets is path-connected:
(i) $A=[0,1[\cup] 1,2]$ in \mathbb{R}.
(ii) A is the union of all circles centered at $(0,0)$ in the plane \mathbb{R}^{2} whose radii are rational numbers.
(iii) $A=\left\{x \in \mathbb{R}^{3}: 1 \leq\|x\| \leq 2\right\}$

Problem 6. Let $U \subset \mathbb{R}^{2}$ be open and path-connected. Remove finitely many points from U and call the resulting set V. Show that V is still path-connected.
Problem 7. Suppose A and B are connected sets in a metric space such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is connected.

