Math 364 Homework 1 (due 9/12/2002)

Problems 1 and 2 below are merely brain-teasers; solving them does not require any background in topology, or even mathematics.

Problem 1. A piece of gum is shown on the left. Explain by simple drawings how you can deform it to get the piece of gum shown on the right.

Problem 2. On a rubber donut with two holes, draw a loop going around one hole. You end up with what is shown on the left. Explain by simple drawings how you can deform it to get a similar donut with the loop going around both holes, as shown on the right.

Problem 3. Let us say that two letters of the English alphabet are equivalent if one can be obtained by continuously deforming the other (we consider lower cases, all letters have thickness, and imagine that they are written on a piece of rubber which can be deformed as much as you wish). For example, \mathbf{a} and \mathbf{b} are equivalent but \mathbf{h} and \mathbf{i} are not. Make a list of all equivalent letters.

Problem 4. (i) For which triples of points x, y, z on the real line does equality hold in the triangle inequality, that is

$$
d(x, y)=d(x, z)+d(z, y) ?
$$

(ii) What would be the answer if x, y, z were points in the plane \mathbb{R}^{2} ? What can you say about the general case \mathbb{R}^{n} ?
Problem 5. For $j=1,2,3, \ldots$, let A_{j} be the open interval $\left(2^{-j}, j\right)$ in \mathbb{R}. What is the union $\bigcup_{j=1}^{\infty} A_{j}$?
Problem 6. Give an example of an infinite collection $A_{1}, A_{2}, A_{3}, \ldots$ of open subsets of the real line such that the intersection $\bigcap_{j=1}^{\infty} A_{j}$ is not open.

Problem 7. Think of the real line \mathbb{R} as the horizontal axis in the plane \mathbb{R}^{2}. Suppose $U \subset \mathbb{R}$ is open. Show that

$$
U \times \mathbb{R}=\left\{(x, y) \in \mathbb{R}^{2}: x \in U\right\}
$$

is an open subset of the plane. (Hint: $U \times \mathbb{R}$ is the union of all vertical lines in \mathbb{R}^{2} which intersect \mathbb{R} at a point of U. Intuitively, if you pour blue paint only on the points of U and apply infinitely long vertical brush strokes, the resulting blue region in the plane will precisely be $U \times \mathbb{R}$.)

Reading assignment: Read Flegg's short informal chapter 3. Also read chapters 14 and 15 which help you remember the basic language of sets and functions. Feel free to skip pages 139 to 145 if you are not interested.

