Math 364 Homework 10 (due 12/6/2002)

Problem 1. The edges of a 10-gon in the plane are to be glued as shown to obtain a compact orientable surface S. Simplify this polygon as in the proof of the Classification Theorem to reduce it to the standard form. Then determine what kind of surface S is.

Problem 2. Each of the following surfaces is compact and orientable, so it has a well-defined genus $g \ge 0$. In each case, determine this genus.

Problem 3. Choose a triangulation of the Klein bottle and use it to compute its Euler characteristic.

Problem 4. Gluing the edges of a square as shown gives a compact non-orientable surface called the *projective plane*. Choose a triangulation of this surface and use it to compute its Euler characteristic. Compare with the result of problem 3 and conclude that the projective plane is not homeomorphic to the Klein bottle.

Problem 5. Drill three holes, each connecting two opposite faces of a cube. What is the genus of the surface of the object obtained this way?

(Hint: Either try to deform this surface into something more familiar, or triangulate it and find the genus by computing its Euler characteristic.)

Problem 6. Prove that it is impossible to subdivide the surface of the sphere into a number of regions, each of which is a topological hexagon, such that distinct regions have no more than one edge in common. (Hint: Assuming there is such a subdivision with v vertices, e edges and f faces, check that e = 3f and $v \leq 2f$ and use the Euler characteristic to get a contradiction.)

Problem 7. (Optional bonus problem) Suppose S is a compact orientable surface with Euler characteristic χ . Consider any standard triangulation of S (in which two triangles are either disjoint, or meet at one vertex, or meet along one edge). Let vbe the number of vertices, e the number of edges and f the number of faces in this triangulation.

(i) Show that

$$3f = 2e.$$

(ii) Define the *degree* of the *i*-th vertex as the number d_i of edges coming together at that vertex. Show that

$$\sum_{i=1}^{v} d_i = 2e$$

(iii) Using (ii), verify that

$$2e \le v(v-1).$$

(iv) Using (i), (iii), and the fact that $\chi = v - e + f$, show that

$$v \ge \frac{1}{2}(7 + \sqrt{49 - 24\chi}).$$

(v) The inequality in (iv) says that the number of vertices is at least 4 in the case of the sphere ($\chi = 2$) and 7 in the case of a torus ($\chi = 0$). Are these lower bounds sharp? That is, can you find standard triangulations of the sphere and the torus with 4 and 7 vertices, respectively?