Math 364 Homework 11 (due 12/17/2002)

Problem 1. Consider any polyhedron with v vertices, e edges and f faces. Let v_{n} be the number of vertices of degree n, and let f_{n} be the number of n-gon faces. Show that

$$
v_{3}+v_{4}+v_{5}+\cdots=v \quad f_{3}+f_{4}+f_{5}+\cdots=f
$$

and

$$
3 v_{3}+4 v_{4}+5 v_{5}+\cdots=3 f_{3}+4 f_{4}+5 f_{5}+\cdots=2 e
$$

Problem 2. A standard soccer ball gives a good example of a polyhedral structure on the sphere, with 12 pentagonal and 20 hexagonal faces. Find v, e and f for this polyhedron and verify the Euler's formula $v-e+f=2$. Find the v_{n} 's and f_{n} 's and verify the relations in Problem 1.

Problem 3. For each vector field, find the index of the singular point at the center of the picture:

Problem 4. Does there exist a continuous vector field in the plane whose trajectories near a singular point look like the following picture?

Problem 5. By drawing a simple diagram, show that there is a continuous vector field on the sphere with exactly two singular points of indices -1 and 3 .
Problem 6. What relation do you think there is between the number of peaks, valleys, and passes on the surface of the earth?
Problem 7. (Brouwer's fixed point theorem) Let $D=\left\{\mathrm{x} \in \mathbb{R}^{2}:\|\mathrm{x}\| \leq 1\right\}$ be the closed unit disk in the plane. If $f: D \rightarrow D$ is a continuous map, then f must have a fixed point, i.e., there must be at least one point $p \in D$ such that $f(p)=p$. (Hint: If f has a fixed point on the boundary circle C, there is nothing to prove. Otherwise, the continuous vector field $V(\mathbf{x})=f(\mathbf{x})-\mathbf{x}$ defined on D is non-zero on the circle C and always points "inward" there. Conclude that there must be a singular point of V in the interior of D.)

