Math 364 Homework 2 (due 9/19/2002)

Problem 1. Show that every finite set of points in \mathbb{R}^n is closed.

Problem 2. Give an example of a closed subset of \mathbb{R}^3 which becomes an open set when one of its points is deleted.

Problem 3. Label each of the following sets as open, closed, both, or neither:

- The set of all points x in \mathbb{R} such that $0 < x^2 \leq 1$.
- The parabola $y = x^2$ in \mathbb{R}^2
- The set of all points in \mathbb{R}^2 whose distance to some point of the parabola $y = x^2$ is less than 0.01.
- The surface of a sphere in \mathbb{R}^3 with the north and south poles removed.

Problem 4. Let A and B be subsets of \mathbb{R}^n . The difference set $A \setminus B$ is the set of all points in A that are not in B (some people use the notation A - B for this set). Thus, for example, A^c (the complement of A) can be described as $\mathbb{R}^n \setminus A$.

- (i) Check that $A \smallsetminus B = A \cap B^c$.
- (ii) Suppose A is open and B is closed. Show that $A \smallsetminus B$ is open and $B \smallsetminus A$ is closed.

Problem 5. True or false: "If A and $A \cup B$ are open, then so is B"?

Problem 6. Think of the real line \mathbb{R} as the horizontal axis in the plane \mathbb{R}^2 ; this way every subset of \mathbb{R} can be considered a subset of \mathbb{R}^2 as well. Suppose $A \subset \mathbb{R}$ is closed in \mathbb{R} . Prove that A is closed in \mathbb{R}^2 .

Problem 7. Let $A \subset \mathbb{R}^n$. A point p is called an *interior point* of A if there is a ball B(p,r) around it that is contained in A. The set of all the interior points of A (if any) is called *the interior of* A and is denoted by int(A). Note that $int(A) \subset A$.

- (i) What is int(A) in each of the following cases?
 - $A = \{x \in \mathbb{R} : 0 \le x \le 1\}$
 - $A = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - $A = \{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - $A = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \ge 1 \text{ or } x_1 \le -1 \text{ or } x_2 = 0\}$
- (ii) Show that for any set A, int(A) is an open set.
- (iii) Show that a set A is open if and only if A = int(A).
- (iv) If U is an open subset of A, show that $U \subset int(A)$. Roughly speaking, this says that int(A) is the "largest" open subset of A.