Math 364 Homework 2 (due 9/19/2002)

Problem 1. Show that every finite set of points in \mathbb{R}^{n} is closed.
Problem 2. Give an example of a closed subset of \mathbb{R}^{3} which becomes an open set when one of its points is deleted.
Problem 3. Label each of the following sets as open, closed, both, or neither:

- The set of all points x in \mathbb{R} such that $0<x^{2} \leq 1$.
- The parabola $y=x^{2}$ in \mathbb{R}^{2}
- The set of all points in \mathbb{R}^{2} whose distance to some point of the parabola $y=x^{2}$ is less than 0.01 .
- The surface of a sphere in \mathbb{R}^{3} with the north and south poles removed.

Problem 4. Let A and B be subsets of \mathbb{R}^{n}. The difference set $A \backslash B$ is the set of all points in A that are not in B (some people use the notation $A-B$ for this set). Thus, for example, A^{c} (the complement of A) can be described as $\mathbb{R}^{n} \backslash A$.
(i) Check that $A \backslash B=A \cap B^{c}$.
(ii) Suppose A is open and B is closed. Show that $A \backslash B$ is open and $B \backslash A$ is closed.

Problem 5. True or false: "If A and $A \cup B$ are open, then so is B "?
Problem 6. Think of the real line \mathbb{R} as the horizontal axis in the plane \mathbb{R}^{2}; this way every subset of \mathbb{R} can be considered a subset of \mathbb{R}^{2} as well. Suppose $A \subset \mathbb{R}$ is closed in \mathbb{R}. Prove that A is closed in \mathbb{R}^{2}.
Problem 7. Let $A \subset \mathbb{R}^{n}$. A point p is called an interior point of A if there is a ball $B(p, r)$ around it that is contained in A. The set of all the interior points of A (if any) is called the interior of A and is denoted by $\operatorname{int}(A)$. Note that $\operatorname{int}(A) \subset A$.
(i) What is $\operatorname{int}(A)$ in each of the following cases?

- $A=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$
- $A=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$
- $A=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$
- $A=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \geq 1\right.$ or $x_{1} \leq-1$ or $\left.x_{2}=0\right\}$
(ii) Show that for any set A, $\operatorname{int}(A)$ is an open set.
(iii) Show that a set A is open if and only if $A=\operatorname{int}(A)$.
(iv) If U is an open subset of A, show that $U \subset \operatorname{int}(A)$. Roughly speaking, this says that $\operatorname{int}(A)$ is the "largest" open subset of A.

