## Math 364 Homework 3 (due 9/27/2002)

Problem 1. In each of the following cases, determine whether or not the set $A$ is (relatively) open in the set $X$ :

- $X$ is the interval $(-2,2)$ in $\mathbb{R}$ and $A$ is the sub-interval $(-2,1]$.
- $X$ is the closed disk $\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$ and $A$ is the set of all points in $X$ with positive first coordinate.
- $X$ is the sphere $\left\{x \in \mathbb{R}^{3}:\|x\|=1\right\}$ and $A$ is the set of all points in $X$ which are closer to the north pole $(0,0,1)$ than to the south pole $(0,0,-1)$.

Problem 2. Let $X \subset \mathbb{R}^{n}$, and suppose $U \subset \mathbb{R}^{n}$ is open. Show that $U \cap X$ is (relatively) open in $X$.
Problem 3. Recall that for a map $f: X \rightarrow Y$, the image of a set $A \subset X$ is defined by

$$
f(A)=\{y \in Y: y=f(x) \text { for some } x \in A\},
$$

while the preimage of a set $A \subset Y$ is defined by

$$
f^{-1}(A)=\{x \in X: f(x) \in A\} .
$$

(i) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|$. What is the image of the closed unit disk $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}$ ? What is the preimage of a single point $x \in \mathbb{R}$ ? (Hint: For the 2nd question, consider the cases $x>0, x=0$, and $x<0$ separately.)
(ii) Given a map $f: X \rightarrow Y$ and a set $A \subset X$, show that $A \subset f^{-1}(f(A))$. Give an example showing that this is not necessarily an equality; i.e., $A$ may actually be smaller than $f^{-1}(f(A))$.

Problem 4. Suppose $f: X \rightarrow Y$ is a map and $A \subset Y$. Show that

$$
X \backslash f^{-1}(A)=f^{-1}(Y \backslash A)
$$

(Thus, the complement of the preimage is the preimage of the complement.) Show by an example that a similar statement is false for images; for instance, find a map $f: \mathbb{R} \rightarrow \mathbb{R}$ and a set $A \subset \mathbb{R}$ such that $f(\mathbb{R} \backslash A)$ is different from $f(\mathbb{R}) \backslash f(A)$.
Problem 5. Each of the following maps is discontinuous. In each case, find an open set in the target space whose preimage is not open in the domain:

- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=[x]$ (the integer part of $x$ ).
- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{ll}+1 & \text { if } x_{2} \geq 0 \\ -1 & \text { if } x_{2}<0\end{array}\right.$.
- $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by $f(x)=\left\{\begin{array}{ll}(\cos x, \sin x,+1) & \text { if } x \geq 0 \\ (\cos x, \sin x,-1) & \text { if } x<0\end{array}\right.$.

Problem 6. Consider the "punctured disk" $X=\left\{x \in \mathbb{R}^{2}: 0<\|x\|<1\right\}$ and the unit circle $Y=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$. Define $f: X \rightarrow Y$ by

$$
f(x)=\frac{x}{\|x\|}
$$

Geometrically, $f(x)$ is the "radial projection" of $x$ on the unit circle. Show, using the $\varepsilon-\delta$ definition, that $f$ is a continuous map. (Hint: In the figure, what is the relation between the radii of the two balls?)


Problem 7. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a map which decreases the distances, in the sense that

$$
d(f(x), f(y)) \leq d(x, y) \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Show that $f$ is necessarily continuous. (Hint: Fix an arbitrary $p \in \mathbb{R}^{n}$ and check continuity at $p$ using the $\varepsilon-\delta$ definition.)

