## Math 364 Homework 4 (due 10/3/2002)

In what follows "bijective" means one-to-one and onto. By "constructing" a homeomorphism is meant finding the explicit formula for a homeomorphism.
Problem 1. Using the topological description of continuity ("preimages of open sets are open") check that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is continuous. (Hint: What is the preimage of an open interval $(a, b) \subset \mathbb{R}$ under $f$ ?)
Problem 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map defined by

$$
f(x, y)= \begin{cases}(x+y, y) & \text { if } y \geq 0 \\ (x, y) & \text { if } y<0\end{cases}
$$

Show that $f$ is bijective. What is the formula for $f^{-1}$ ? What does the image of a small ball $B(p, r)$ under $f$ look like? (Hint: Consider separately the cases where $p$ is above, below, or on the $x$-axis). Using the topological description of continuity, check that both $f$ and $f^{-1}$ are continuous.
Problem 3. Construct two different homeomorphisms between the intervals $[0,1)$ and $(0,2]$ of the real line.
Problem 4. Give an example of a bijective map $f:[0,1] \rightarrow[0,1]$ which is not a homeomorphism.
Problem 5. Construct a homeomorphism between the rectangles

$$
\begin{aligned}
& X=\left\{(x, y) \in \mathbb{R}^{2}: 0<x \leq 1 \text { and } 0 \leq y \leq 2\right\} \\
& Y=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 2 \text { and } 0<y \leq 3\right\} .
\end{aligned}
$$

Problem 6. Let $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ be the unit circle in the plane. Define $f:[0,2 \pi) \rightarrow C$ by $f(t)=(\cos t, \sin t)$. Show that $f$ is bijective and continuous, but the inverse map $f^{-1}: C \rightarrow[0,2 \pi)$ is not continuous at the point $(1,0) \in C$.
Problem 7. Let $X=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right.$ and $\left.z \neq \pm 1\right\}$ (the surface of the unit sphere with the north and south poles removed) and $Y=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$ : $x^{2}+y^{2}=1$ and $\left.-1<z<1\right\}$ (the surface of a vertical cylinder of radius 1 and height 2). Construct an explicit homeomorphism $f: X \rightarrow Y$.

