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1. If f : D → D is holomorphic, show that |f ′(0)| ≤ 1 (this is classical Schwarz
Lemma if f(0) = 0). Conclude that if f : D(p, δ)→ D(q, ε) is holomorphic, then
|f ′(p)| ≤ ε/δ.

2. For f ∈ PSL2(C), denote by τ(f) the well-defined quantity tr2(f) ∈ C. Show
that two non-identity elements f, g ∈ PSL2(C) are conjugate iff τ(f) = τ(g).
Verify that a non-identity f ∈ PSL2(C) is

• hyperbolic iff τ(f) > 4;

• parabolic iff τ(f) = 4;

• elliptic iff 0 ≤ τ(f) < 4;

• loxodromic iff τ(f) ∈ C r [0,+∞[.

What is the relationship between τ(f) and the multiplier(s) of f at its fixed
point(s)?

3. Show that f ∈ PSL2(C) represents an involution of the sphere iff τ(f) = 0.

4. Observe that for f, g ∈ PSL2(C), the quantity tr[f, g] = tr(fgf−1g−1) is inde-
pendent of the representatives f and g. Show that two non-identity elements
f, g ∈ PSL2(C) have a common fixed point iff tr[f, g] = 2. In particular, having a
common fixed point implies a parabolic commutator. On the other hand, verify
that the elements

f =

(
i 0
0 −i

)
and g =

(
1 −1
1 0

)

satisfy tr[f, g] = −2, so the commutator [f, g] is parabolic, yet f and g do not
share fixed points.

5. Show that an element of PSL2(C) represents a rigid rotation of the sphere (under
the stereographic projection) iff it has the form

(
a b
−b a

)
.

Note that this gives another proof for SO(3) ∼= RP3 since the space of all such
matrices is homeomorphic to the 3-sphere {(a, b) ∈ C2 : |a|2 + |b|2 = 1} with the
antipodal points (a, b) and (−a,−b) identified.

6. (Iwasawa decomposition) Show that every f ∈ PSL2(C) can be written as

f =

(
a b
−b a

) (
λ 0
0 λ−1

) (
1 µ
0 1

)
,

1
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where a, b, µ ∈ C, |a|2 + |b|2 = 1, and λ > 0. Show that this decomposition is
unique, except that the pair (a, b) can be replaced by (−a,−b). Conclude that
PSL2(C) is homeomorphic to RP3 × R3.

7. (i) Show that the meromorphic form

dz ⊗ dw

(z − w)2

on Ĉ × Ĉ is invariant under the diagonal action of Aut(Ĉ) defined by f :
(z, w) 7→ (f(z), f(w)).

(ii) Let f ∈ Aut(H). Show that for all z, w ∈ H,

|f(z)− f(w)| = |z − w| |f ′(z)f ′(w)| 12 .

8. Show that the upper half-plane H can be identified with the subgroup of Aut(H)
consisting of real affine transformations. Use this identification to make H into
a Lie group. Show that under this identification, every left multiplication Lz :
w 7→ z ∗w acts as an automorphism of H. What are the left and right invariant
area forms of the Lie group (H, ∗)?

9. Let Γ be a subgroup of PSL2(R). Prove that the following conditions are equiv-
alent:

(i) Γ acts properly discontinuously on H;

(ii) For every x ∈ H, the orbit Γx = {γ(x) : γ ∈ Γ} is a discrete subset of H;

(iii) Γ is a discrete subgroup of PSL2(R).

10. Let Γ be a discrete subgroup of PSL2(R) all of whose non-identity elements have
the same fixed-point set. Prove that Γ is cyclic.

11. Show that no discrete subgroup of PSL2(R) can be isomorphic to Z× Z.
12. Let Γ be a discrete subgroup of PSL2(R). Show that the normalizer of Γ defined

by
N(Γ) = {γ ∈ PSL2(R) : γΓγ−1 ⊂ Γ}

is discrete iff Γ is non-abelian.

13. Let X,Y be Riemann surfaces, πX : X̃ → X and πY : Ỹ → Y be their uni-
versal coverings, and ΓX and ΓY be the corresponding deck groups. Consider a
holomorphic map f : X → Y .

(i) Show that f lifts to a holomorphic map F : X̃ → Ỹ so that f ◦πX = πY ◦F .
Verify that F is unique up to postcomposition with an element of ΓY .

(ii) Show that f induces a group homomorphism θ : ΓX → ΓY which satisfies
θ(γ) ◦ F = F ◦ γ for every γ ∈ ΓX .
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(iii) Assume now that f is a biholomorphism. Prove that F is a biholomorphism
and that the conjugation θ : γ 7→ F ◦ γ ◦ F−1 is a group isomorphism

ΓX

∼=−→ ΓY .

14. Let X̃ be a simply-connected Riemann surface and Γ1,Γ2 ⊂ Aut(X̃) be fixed-
point free properly discontinuous subgroups. Show that the Riemann surfaces

X̃/Γ1 and X̃/Γ2 are biholomorphic iff there exists F ∈ Aut(X̃) such that Γ2 =
F Γ1 F

−1.

15. Let Γ be a fixed-point free discrete subgroup of Aut(D). Show that the automor-
phism group of the Riemann surface D/Γ is isomorphic to the quotient N(Γ)/Γ.

16. For τ ∈ H, denote by Γτ the subgroup of Aut(C) generated by z 7→ z + 1 and
z 7→ z + τ . Show that any torus C/Γ is biholomorphic to some C/Γτ , but this
τ is far from being unique. In fact, show that the tori C/Γτ and C/Γσ are
biholomorphic iff

σ =
aτ + b

cτ + b
, where

(
a b
c d

)
∈ SL2(Z).

It follows that the “moduli space” of compact Riemann surfaces of genus 1 is
isomorphic to the quotient H/PSL2(Z).

17. Let π : H → C r {0, 1} be the universal covering map given by the standard
“elliptic modular function” (recall that π is obtained by mapping the ideal tri-
angle with vertices at 0, 1,∞ conformally onto H and extending it by reflections
through the edges of this triangle in the domain and the real line in the range).

0 1

0 1

1 2

π

η η

(i) Consider the generators of the fundamental group of C r {0, 1} represented
by

η1(t) =
1

2
eit, η2(t) = −

1

2
eit + 1 (0 ≤ t ≤ 2π),
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as shown in the figure. Find the explicit formulas of the deck transformations
in Aut(H) corresponding to these generators.

(ii) Show that the deck group Γ ⊂ Aut(H) associated with π is isomorphic to
the “modular group”

{(
a b
c d

)
∈ PSL2(Z) :

(
a b
c d

)
≡
(
1 0
0 1

)
(mod2)

}
.

18. This problem gives two practically useful methods of proving that a given map
is covering. Let X and Y be connected topological manifolds.

(i) Recall that f : Y → X is proper if f−1(K) is compact for every compact
set K ⊂ X. Show that f : Y → X is a finite-degree covering map iff it is a
proper local homeomorphism.

(ii) Let us say that a continuous map f : Y → X has the curve lifting property if
given any curve γ : [0, 1]→ X and any y ∈ Y with f(y) = γ(0) there exists
a lift γ̃ : [0, 1] → Y of γ such that γ̃(0) = y. Show that f : Y → X is a
covering map iff it is a local homeomorphism with the curve lifting property.

19. Let f : X → Y be a holomorphic map between hyperbolic Riemann surfaces and
F : D → D be any lift of f to the universal coverings. Show that F ∈ Aut(D)
iff f is a covering map.

20. The maps E : H → D∗ and Πk : D∗ → D∗ given by

E(z) = exp(2πiz) and Πk(z) = zk

evidently define coverings of the punctured disk. This problem shows that up
to biholomorphism, these are the only holomorphic coverings of D∗. Let X be a
Riemann surface and π : X → D∗ be a holomorphic covering map.

(i) If π has infinite degree, show that there exists a biholomorphic map f : X →
H such that π = E ◦ f .

(ii) If π has finite degree k, show that there exists a biholomorphic map f : X →
D∗ such that π = Πk ◦ f .

21. Prove that every hyperbolic Riemann surface with abelian fundamental group is
biholomorphic to the unit disk D, or to the punctured disk D∗, or to an annulus
A(1, R) = {z : 1 < |z| < R} for a unique R > 1.

22. Show that given any two unit (in hyperbolic norm) tangent vectors u,v ∈ TH
there exists a unique f ∈ Aut(H) such that f∗(u) = v. Conclude that the unit
tangent bundle of H can be identified with Aut(H) ∼= PSL2(R).

23. Show that every non-identity f ∈ PSL2(R) belongs to a unique one-parameter
subgroup (=homomorphic image of the additive group of real numbers) and that
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this one-parameter subgroup is conjugate to

t 7→
(
et 0
0 e−t

)
or

(
1 t
0 1

)
or

(
cos t sin t
− sin t cos t

)

depending on whether f is hyperbolic, parabolic, or elliptic. If you identify
PSL2(R) with the unit tangent bundle of H, can you visualize a one-parameter
subgroup geometrically?

24. This problem discusses invariant metrics on non-hyperbolic Riemann surfaces.

(i) Show that there is no Riemannian metric on Ĉ which is invariant under the

action of Aut(Ĉ). However, verify that the spherical metric

σ =
2 |dz|
1 + |z|2

on Ĉ is invariant under the action of the subgroup SO(3) ⊂ Aut(Ĉ) consist-

ing of all rotations z 7→ az + b

−bz + a
.

(ii) Similarly, show that there is no Riemannian metric on C which is invariant
under the action of Aut(C). However, prove that every parabolic Riemann
surface admits a flat Euclidean metric which is unique up to multiplication
by a positive constant.

25. Show that f ∈ Aut(H) is hyperbolic iff it carries a (necessarily unique) Poincaré
geodesic to itself without fixed points. This geodesic is often called the axis of
f . Verify that f acts on its axis as a translation. What is the relation between
the hyperbolic length of this translation and the invariant tr2(f)?

26. Verify that the hyperbolic distances in the unit disk and the upper half-plane
are given by

distD(z, w) = log

( |1− zw|+ |z − w|
|1− zw| − |z − w|

)
,

distH(z, w) = log

( |z − w|+ |z − w|
|z − w| − |z − w|

)
.

27. Show that a given pair of points in D can be mapped by an element of Aut(D) to
another pair of points iff they have the same hyperbolic distance. By contrast,
show that three given points on the boundary circle ∂D can be mapped by an
element of Aut(D) to another three points on ∂D iff they have the same cyclic
order.

28. Three circles in D are tangent to each other and to the unit circle ∂D as shown.
Prove that the hyperbolic area of the shaded region does not depend on the
particular choice of the circles.
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29. (Gauss-Bonnet in hyperbolic plane) Let T be a hyperbolic triangle with vertices
in H = H ∪R ∪ {∞} and with interior angles α, β, γ. Show that the hyperbolic
area of T is π − (α + β + γ). You may find it easier to first consider the case
where γ = 0 so that the corresponding vertex is on R∪ {∞}. In this case, after
applying an automorphism (which does not change the area or angles), you can
put T is the position shown and compute the area by integration.

0 1
βα

α
β

T

30. For an ordered quadruple (z1, z2, z3, z4) of distinct points in Ĉ, define the cross-
ratio by

χ(z1, z2, z3, z4) =
(z3 − z1)(z4 − z2)

(z2 − z1)(z4 − z3)
∈ C r {0, 1}.

(i) Let f ∈ Aut(Ĉ) be the unique automorphism which sends z1, z2, z4 to 0, 1,∞,
respectively. Show that f(z3) = χ(z1, z2, z3, z4).

(ii) Verify that if f ∈ Aut(Ĉ), then

χ(f(z1), f(z2), f(z3), f(z4)) = χ(z1, z2, z3, z4)

for every quadruple (z1, z2, z3, z4). Conversely, show that if a homeomor-

phism f : Ĉ → Ĉ preserves cross-ratios of all quadruples, then f ∈ Aut(Ĉ).

(iii) Show that χ(z1, z2, z3, z4) ∈ R iff the points z1, z2, z3, z4 lie on a circle.
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(iv) Let z, w be points in H and suppose that the geodesic joining z to w meets
∂H = R∪ {∞} at z1 and z2, with z between z1 and w as shown. Prove that

distH(z, w) = logχ(z1, z, w, z2).

z
w

z1 z2

31. Let L ⊂ H be a hyperbolic geodesic. Describe the set of points in H whose
hyperbolic distance to L is at most d > 0.

32. Compute the hyperbolic perimeter L(r) and area A(r) of a hyperbolic circle of
radius r > 0. What is limr→+∞ L(r)/A(r)?

33. Two particles are at the point 0 of the hyperbolic plane D. At time t = 0 they
start moving with unit speed along two geodesics through 0 which make an angle
θ. Let `(t) be their distance at time t > 0. Show that

2t− `(t)→ c(θ) as t→ +∞,

where c(θ) depends only on θ. Compare this with the corresponding situation
in the Euclidean plane, where 2t− `(t) increases linearly in t (unless θ = π).

34. Show that triangles in the hyperbolic plane are peculiarly “thin” in the following
sense: If ABC is any hyperbolic triangle in D and z ∈ BC, then there exists a
w ∈ AB ∪ AC such that

distD(z, w) ≤ log(1 +
√
2) ≈ 0.881373.

This phenomenon is common in spaces of negative curvature.

35. Show that the hyperbolic metric on D∗ is given by

ρD∗ =
−1

|z| log |z| |dz|,

while on the annulus A(1, R) = {z : 1 < |z| < R} it takes the form

ρA(1,R) =

π
logR

|z| sin
(

π log |z|
logR

) |dz|.

36. Show that there is no closed hyperbolic geodesic in D∗. On the other hand, show
that for the annulus A(1, R) the circle |z| =

√
R is a closed geodesic, and that

it is the unique closed geodesic in its free homotopy class.
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37. Let X be a conformal annulus, that is, a Riemann surface biholomorphic to
the round annulus A(1, R) for some (necessarily unique!) R > 1. Recall that
the modulus of X is defined as mod(X) = 1

2π
logR. Let η be the core curve of

X, that is, the unique closed geodesic which generates π1(X). Show that the
hyperbolic length of η is given by π/mod(X). In particular, squeezing the core
curve of X makes X look thicker.

38. Let X be a hyperbolic Riemann surface.

(i) Show that if η is a curve in X connecting p to q, then there exists a unique
geodesic connecting p to q which is homotopic to η rel {p, q}. In particular,
if η is a loop passing through p, there exists a unique geodesic loop passing
through p homotopic to η rel {p} (note that this geodesic loop may not be
a closed geodesic; it may have a corner at p).

(ii) Show by an example that there may be no closed geodesic homotopic a given
loop on X. (However, it can be shown that when X is compact, there is a
unique closed geodesic homotopic to a given loop η, and this geodesic is
simple if η is.)

39. Suppose X is a hyperbolic Riemann surface with the universal covering map
π : D → X. For z, w ∈ X, show that

distX(z, w) = inf {distD(z̃, w̃) : π(z̃) = z and π(w̃) = w}.

40. Suppose X is a hyperbolic Riemann surface with the universal covering map
π : D → X. For z ∈ X define

r(z) =
1

2
inf {distD(z̃, w̃) : π(z̃) = z = π(w̃) and z̃ 6= w̃}.

(i) For z ∈ X and z̃ ∈ π−1(z), show that the π maps the hyperbolic ball
BD(z̃, r(z)) homeomorphically onto the hyperbolic ball BX(z, r(z)). In par-
ticular, BX(z, r(z)) is an embedded disk. Because of this property, r(z) is
often called the injectivity radius at z.

(ii) Show that r(z) is the largest radius for which (i) holds. In fact, verify
that the closure of BX(z, r(z)) contains a homotopically non-trivial loop, so
BX(z, δ) in not an embedded disk if δ > r(z). Conclude that 2r(z) is the
length of the shortest homotopically non-trivial loop in X passing through
z.
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(iii) Verify that r : X → R+ is 1-Lipschitz, that is,

|r(z)− r(w)| ≤ distX(z, w) for all z, w ∈ X.

41. Let X be a compact hyperbolic Riemann surface (so that X has genus ≥ 2).

(i) Show that there exists ε > 0 such that every loop on X of hyperbolic length
< ε is homotopically trivial.

(ii) Let Γ ⊂ Aut(D) be the deck group of the universal covering map π : D → X.
Show that every element of Γ is a hyperbolic automorphism.

42. (Horoballs) For any p, z ∈ D, let B(z) be the hyperbolic ball centered at z of
radius distD(z, p). Show that as z → w ∈ ∂D while p is fixed, the ball B(z)
converges to a Euclidean ball H which is tangent to ∂D at w and has p on its
boundary. Such an H is called a horoball in the hyperbolic plane. Prove the
following statements:

(i) An automorphism γ : D → D maps horoballs touching ∂D at w to horoballs
touching ∂D at γ(w).

(ii) Let H be a horoball touching ∂D at w. Then a non-identity γ ∈ Aut(D)
satisfies γ(H) = H iff γ is parabolic with fixed point w.

(iii) Let γ ∈ Aut(D) be parabolic with fixed point w ∈ ∂D. Show that the
centralizer

Cent(γ) = {σ ∈ Aut(D) : γ ◦ σ = σ ◦ γ}

is precisely the subgroup of all automorphisms which preserve every horoball
touching ∂D at w.

(iv) Let H be a horoball and γ 6= id be a parabolic automorphism with γ(H) =
H. Show that there is an 0 < r < 1 such that the quotient Riemann
surface H/〈γ〉 is isometric to the punctured disk D∗(0, r) equipped with the
hyperbolic metric of D∗. Conclude that this quotient has finite hyperbolic
area. What is the relation between the area of H/〈γ〉 and the length of the
loop ∂H/〈γ〉?

43. Let Γ be a discrete subgroup of PSL2(R) containing the parabolic element τ =(
1 1
0 1

)
.

(i) Show that for every γ =

(
a b
c d

)
∈ Γ, either c = 0 or |c| ≥ 1. To this end,

you may find it useful to consider the sequence γn ∈ Γ defined by

γ0 = γ, γn+1 = γn ◦ τ ◦ γ−1
n .
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(ii) Suppose Γ is a discrete subgroup of Aut(H) which contains the translation
τ : z 7→ z + b (b > 0), and denote by Cent(τ) the centralizer of τ in Γ,
consisting of all translations in Γ. Show that the horoballH = {z : =(z) > b}
satisfies

σ(H) ∩H = ∅ for all σ ∈ Γ r Cent(τ).

44. (Ends) Let X be a connected oriented topological surface and K = {Kn} be
an exhaustion of X, that is, each Kn ⊂ X is compact, Kn ⊂ int(Kn+1) and
X =

⋃
Kn. An end sequence {Un} associated with K is a choice of a non-

empty connected component Un of X rKn for each n, subject to the condition
Un+1 ⊂ Un. Two end sequences {Un} and {U ′m} associated with exhaustions K

and K
′ are considered equivalent if Un ∩ U ′m 6= ∅ for all n,m. Each equivalence

class of this relation is called an end of X.

(i) Verify that X is compact iff it has no ends.

(ii) If X is embedded in a compact surface Y , show that there is a one-to-one
correspondence between the ends of X and the connected components of
∂X ⊂ Y .

(iii) Show that the surface on the left has a unique end, while the one on the
right has two ends. Conclude that these surfaces are not homeomorphic (try
proving this without using the concept of end!).

45. (Cusps) Suppose X is a hyperbolic Riemann surface and Γ is the deck group
of the universal covering map D → X. An end of X is called a cusp if it
is represented by an end sequence {Un}, where each Un is biholomorphic to
D∗ = D r {0}.
(i) If {Un} represents a cusp, show that π1(Un+1) ∼= π1(Un) and that the inclu-

sion Un ↪→ X injects π1(Un) into π1(X).

(ii) If γ ∈ Γ is the deck transformation corresponding to a generator of π1(Un) ∼=
Z, show that γ must be a parabolic automorphism.

(iii) Conversely, show that every parabolic γ ∈ Γ gives rise to a cusp in X by
completing the following sketch: The centralizer of γ in Γ is infinite cyclic
with a parabolic generator γ1. Let H = γ1(H) be a horoball such that
σ(H) ∩H = ∅ for all σ ∈ Γ r 〈γ1〉. Choose a sequence H ⊃ H1 ⊃ H2 ⊃ · · ·
of horoballs all touching ∂D at the same point as H, and show that {Un =
Hn/Γ} represents a cusp in X.
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(iii) Conclude that every cusp is represented by an end sequence {Un}, where
each (Un, ρX) is isometric to (D∗(0, rn), ρD∗) for some 0 < rn < 1. In other
words, a neighborhood of 0 in the punctured disk is a universal model for a
neighborhood of a cusp on a hyperbolic surface.

It can be shown that any end represented by a sequence {Un} in which some Un

has finite hyperbolic area is in fact a cusp.

46. Recall that the Gaussian curvature of a C2 conformal metric ρ = ρ(z) |dz| on a
Riemann surface is defined by

κ(z) = −∆ log ρ(z)

ρ2(z)
,

where ∆ = 4
∂

∂z

∂

∂z
is the usual Laplacian.

(i) Verify that this definition makes κ conformally invariant. In other words,
if z 7→ w is conformal and ρ̃(w)|dw| is the corresponding metric in the
coordinate w, then

−∆ log ρ(z)

ρ2(z)
= −∆ log ρ̃(w)

ρ̃ 2(w)
.

In particular, the definition of κ does not depend on the choice of the coor-
dinate z.

(ii) Verify that the spherical metric σ = 2 |dz|/(1 + |z|2) has constant curvature
+1.

(iii) Show that the curvature of the metric ρ = c |dz|/(1− |z|2) on the unit disk
is the constant κ ≡ −4/c2.

(iv) With ρ as in (iii), let L(r) be the ρ-perimeter of a circle of ρ-radius r > 0.
Show that

L(r) = 2πr − π

3
κr3 +O(r5) as r → 0,

so that

κ = −1

3

d2

dr2

(
L(r)

2πr

) ∣∣∣
r=0

.

In other words, κ measures the third-order deviation of L(r) from the Eu-
clidean perimeter 2πr when r is small.

47. (Ahlfors’s version of Schwarz Lemma) Let X be a Riemann surface equipped
with a C2 conformal metric ρ whose Gaussian curvature is everywhere bounded
above by a negative constant −B. If f : D → X is a holomorphic map, show
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that

‖f ′(z)‖ = ρ(f(z)) |f ′(z)|
ρD(z)

≤ 1√
B

for all z ∈ D.

You may find it helpful to first replace the hyperbolic metric ρD by the metric

ρr(z) =
2r |dz|
r2 − |z|2

on the disk |z| < r < 1 and note that the ratio ρ(f(z))|f ′(z)|/ρr(z) tends to zero
as |z| → r, so it has to take its maximum value somewhere in the disk |z| < r.

48. Let X be a Riemann surface which admits a C2 conformal metric whose cur-
vature is bounded above by a negative constant. Check that X cannot be con-

formally isomorphic to Ĉ. On the other hand, use Ahlfors’s version of Schwarz
Lemma to show that any holomorphic map C → X must be constant, so X can-
not be a parabolic Riemann surface. Conclude that a Riemann surface admits
such a metric iff it is hyperbolic.

49. Let U ⊂ C be a hyperbolic domain. For z ∈ U , let δ(z) denote the Euclidean
distance from z to ∂U . As usual, let ρU(z) |dz| denote the hyperbolic metric in
U .

(i) If U is simply-connected, show that

1

2δ(z)
≤ ρU(z) ≤

2

δ(z)

for all z ∈ U . Thus, ρU(z) blows up near ∂U at the same rate as 1/δ(z). You
may find it helpful to use Schwarz Lemma for the upper bound and Koebe
1/4-Theorem for the lower bound.

(ii) In general, show that there is a constant C > 0 such that

C

|δ(z) log δ(z)| ≤ ρU(z) ≤
2

δ(z)

for all z ∈ U .
50. Suppose X ( Y are hyperbolic Riemann surfaces. For z ∈ X, let δ(z) be the

ρY -distance from z to ∂X ⊂ Y . Show that the inclusion map ι : X → Y satisfies

tanh

(
δ(z)

2

)
≤ ‖i′(z)‖ = ρY (z)

ρX(z)
≤ C |δ(z) log δ(z)|,

where C > 0 is a constant.

51. Suppose U ( C is simply-connected, z, w ∈ U , and d = distU(z, w). Use classical
Köebe Distortion Theorem to show that

e−2d ≤ ρU(z)

ρU(w)
≤ e2d.
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52. Prove the following general version of Köebe Distortion Theorem: Suppose U (
C is simply-connected and φ : U → C is univalent. Let K ⊂ U be compact,
with hyperbolic diameter d. Then

sup

{ |φ′(z)|
|φ′(w)| : z, w ∈ K

}
≤ e4d.

53. Show that normality is a local property. More precisely, letX and Y be Riemann
surfaces and F ⊂ Hol(X,Y ). Show that F is normal iff every z ∈ X has a
neighborhood U such that F|U ⊂ Hol(U, Y ) is normal.

54. Let X and Y be Riemann surfaces, Y be compact, and F ⊂ Hol(X,Y ). Show
that F is normal iff for every compact setK ⊂ X there exists a constantM(K) >
0 such that

sup
f∈F,z∈K

‖f ′(z)‖ ≤M(K).

Here the norm ‖f ′(z)‖ can be measured with respect to any smooth Riemannian
metrics on X and Y .

55. Let fn(z) = z + n. Show that {fn}, as a family of holomorphic maps C → C,
tends locally uniformly to infinity in C. On the other hand, show that {fn},
as a family of holomorphic maps Ĉ → Ĉ, converges pointwise to the constant

function Ĉ → {∞} but this convergence is not uniform (in other words, fn does

not converge in Hol(Ĉ, Ĉ)).

56. Suppose A,B,C : X → Ĉ are holomorphic maps with distinct values at each

point of X. Let fn : X → Ĉ be a sequence of holomorphic maps such that

fn(z) 6= A(z) fn(z) 6= B(z) fn(z) 6= C(z)

for every z ∈ X and every n. Show that {fn} is normal.

57. (Picard’s Great Theorem) Let f : D∗ → C be holomorphic, with an essential
singularity at 0. Apply Montel’s Theorem to an appropriately defined family of
holomorphic maps to show that C r f(D∗) contains at most one point.

58. This problem shows that non-constant proper holomorphic maps have a well-
defined “mapping degree” (the number of preimages of a point counting mul-
tiplicities). Suppose f : X → Y is a non-constant, proper holomorphic map
between Riemann surfaces.

(i) Let C be the set of critical points of f and V = f(C) be the set of critical
values. Verify that C, hence V , is discrete. Show that

f : X r f−1(V )→ Y r V

is a covering map of some finite degree d. It follows in particular that
f(X) = Y .
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(ii) Show that for every w ∈ Y ,
∑

z∈f−1(w)

deg(f, z) = d.

Here deg(f, z) denotes the local degree of f at z.

(iii) Can you find a proper holomorphic map of degree 2 with infinitely many
critical points?

59. (Branched coverings) This exercise develops a topological analogue for proper
holomorphic maps. Let X and Y be two connected oriented topological surfaces.
A continuous map f : X → Y is called a branched covering if for every q ∈ Y
there is an open ball V (q) such that f−1(V (q)) is the disjoint union of open
balls

⋃
p∈f−1(q) U(p), and the action f : U(p) → V (q) is like a power, that is,

there are homeomorphisms ϕ : U(p)
∼=−→ D and ψ : V (q)

∼=−→ D such that
ψ ◦ f ◦ ϕ−1(z) = zk for some k ≥ 1. The integer k, which is independent of the
choice of ϕ and ψ, is called the local degree of f at p and is denoted by deg(f, p).
We call p ∈ X a branch point if deg(f, p) > 1, and q ∈ Y a ramified point if
q = f(p) for some branch point p. We denote by B and R = f(B) the set of
branch and ramified points of f , respectively.

(i) Show that B and R are discrete sets.

(ii) Show that f : X r f−1(R)→ Y r R is a covering map, with a well-defined
degree 1 ≤ d ≤ +∞.

(iii) Assume d < +∞. Show that for every q ∈ Y ,
∑

p∈f−1(q)

deg(f, p) = d.

(iv) Prove that a non-constant holomorphic map between Riemann surfaces is
a finite-degree branched covering iff it is proper. In this case, the branch
points correspond to the critical points and the ramified points correspond
to the critical values of f .

60. Let f : X → Y be a branched covering of finite degree d ≥ 1.

(i) Suppose V ⊂ Y is a domain and U ⊂ X is a connected component of
f−1(V ). Show that f : U → V is a branched covering of some degree ≤ d
(in particular, it is surjective).

(ii) If in (i) the domain V is simply-connected and U contains no branch point,
prove that f : U → V is a homeomorphism.

61. (The Monodromy Theorem) Suppose f : X → Y is a non-constant proper holo-
morphic map, and V ⊂ Y is a simply-connected domain containing no critical
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value of f . Then there exists a holomorphic map g : V → X which satisfies
f ◦ g = id. One calls g a “holomorphic branch of f−1.”

62. Let f : D → D be a degree two proper holomorphic map. Show that there exist
σ, τ ∈ Aut(D) such that (σ ◦ f ◦ τ)(z) = z2 for all z.

63. Let X be a compact Riemann surface of genus g ≥ 1 and f : X → X be a
non-constant holomorphic map. Use Riemann-Hurwitz formula to show that

(i) If g = 1, then f is a covering map of finite degree (which could take any
value ≥ 1).

(ii) If g > 1, then f is a biholomorphism.

64. Let f : X → Y be a non-constant holomorphic map between compact hyperbolic
surfaces. If f has N ≥ 1 critical points counting multiplicities, show that

1 +
N

χ(X)
< sup

z∈X
‖f ′(z)‖2 < 1.

65. (Degree-Genus Formula) Let X ⊂ CP2 be a non-singular algebraic curve of
degree d. Show that the genus of X is given by

g =
(d− 1)(d− 2)

2

by completing the following sketch: Suppose X is defined as the zero locus of an
irreducible degree d polynomial P (z, w). Using the fact that CP2r{point} fibers
over CP1 ∼= Ĉ, define a branched covering X → Ĉ and apply Riemann-Hurwitz
formula.

66. Let U, V ⊂ Ĉ be hyperbolic domains, with V simply-connected. Suppose f :
U → V is a proper holomorphic map of degree d ≥ 2 with a single critical value
v. Show that f−1(v) consists of a single point c, and there are bohilomorphisms
ϕ : U r {c} → D∗ and ψ : V r {v} → D∗ such that ψ ◦ f ◦ ϕ−1(z) = zd for all
z ∈ D∗.

67. Suppose f is a holomorphic self-map of a hyperbolic Riemann surface X.

(i) If f has two fixed points in X, show that f ◦n = idX for some n.

(ii) If f has a fixed point z0 whose multiplier f ′(z0) is an n-th root of unity, show
that f ◦n = idX .

68. Let X be a compact Riemann surface of genus g ≥ 2. Show that every non-
constant holomorphic map X → X is a finite-order automorphism. (A classical
theorem of Hurwitz asserts that Aut(X) is a finite group of order at most 84(g−
1).)
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69. Let X be a Riemann surface, f : X → X be holomorphic, K ⊂ X be non-
empty and compact, and f(K) ⊂ K. Prove that the following conditions are
equivalent:

(i) There exists a conformal metric ρ defined in a neighborhood of K and a
constant λ > 1 such that ‖f ′(z)‖ρ > λ for every z ∈ K.

(ii) There exists a conformal metric ρ defined in a neighborhood of K and con-
stants C > 0, λ > 1 such that ‖(f ◦n)′(z)‖ρ > C λn for every z ∈ K and every
n ≥ 1.

(iii) There exists a conformal metric ρ defined in a neighborhood of K, a positive
integer n and a constant λ > 1 such that ‖(f ◦n)′(z)‖ρ > λ for every z ∈ K.

(Note that the metrics and the constants in (i), (ii), or (iii) are perhaps different).
If any and hence all of these conditions are satisfied, we say that f is expanding
on K. An important corollary is that when f is expanding on K and z ∈ K,
‖(f ◦n)′(z)‖ρ → +∞ exponentially fast for any conformal metric defined near K.

70. For τ ∈ H, consider the lattice Λ = Z + τ Z in C. Let g denote the affine map
z 7→ αz + β, where α, β ∈ C.

(i) Show that g induces a holomorphic self-map of the torus T = C/Λ iff αΛ ⊂ Λ
(note that this puts no restriction on β and is always satisfied if α ∈ Z).
Show that the resulting map T → T is a covering map of degree |α|2; in
particular, |α|2 must be an integer.

(ii) Show that there exists an α /∈ Z with the property αΛ ⊂ Λ iff τ satisfies a
quadratic equation of the form

Aτ 2 +Bτ + C = 0 with A,B,C ∈ Z and B2 < 4AC.

Such a lattice is said to admit a complex multiplication.

(iii) Classify all lattices Λ and all numbers α such that

|α| = 1, α 6= ±1 and αΛ ⊂ Λ.

(iv) Fix any α 6= 0 such that αΛ ⊂ Λ. Verify that for any z0, the equation
g(z) = αz + β = z0 has |α|2 distinct roots in T . If α 6= 0, 1, show that g
has |α − 1|2 distinct fixed points in T ; in particular, |α − 1|2 must also be
an integer. More generally, if α is not an n-th root of unity, show that g◦n

has |αn − 1|2 distinct fixed points in T ; in particular, |αn − 1|2 must be an
integer.

71. For τ ∈ H, consider the Weierstrass function ℘τ : C → Ĉ associated to the lattice

Z + τ Z. Let fτ : Ĉ → Ĉ be the degree n2 Lattès map satisfying fτ (℘τ (z)) =
℘τ (nz) for all z ∈ C.
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(i) Show that for every pair τ, σ ∈ H, the Lattès maps fτ and fσ are topologically
conjugate.

(ii) For what pairs τ, σ ∈ H are fτ and fσ conformally conjugate?

72. For a rational map f : Ĉ → Ĉ, let C(f) denote the set of critical points and
V (f) = f(C(f)) the set of critical values of f . Show that for any k ≥ 1,

C(f ◦k) =
k−1⋃

j=0

f−j(C(f)) and V (f ◦k) =
k−1⋃

j=0

f ◦j(V (f)).

73. Let f ∈ Ratd with d ≥ 2. Suppose K is a non-empty compact set which is
totally invariant under f (that is, f−1(K) = K).

(i) If #K ≤ 2, show that K is contained in the exceptional set E(f) consisting
of grand orbit finite points.

(ii) If #K ≥ 3, show that K ⊃ J(f).

Part (ii) says that the Julia set is the smallest compact totally invariant set
which has at least 3 points.

74. Let f ∈ Ratd with d ≥ 2. If #E(f) = 1, show that f is conjugate to a polynomial.
If #E(f) = 2, show that f is conjugate to z 7→ zd or z 7→ z−d.

75. Let f, g ∈ Ratd with d ≥ 2. If f and g commute, show that J(f) = J(g). Is the
converse necessarily true?

76. Let f ∈ Ratd with d ≥ 2. Show that the automorphism group of f , defined by

Aut(f) = {σ ∈ Aut(Ĉ) : σ ◦ f = f ◦ σ},
is always finite. Can you describe this group when f(z) = zd?

77. Let f ∈ Ratd with d ≥ 2, and suppose U is a Fatou component of f . Show that
f(U) is also a Fatou component and the map f : U → f(U) is proper with a
well-defined degree ≤ d.

78. Let f ∈ Ratd with d ≥ 2. Suppose U = f−1(U) is a totally invariant Fatou
component of f . Show that ∂U = J(f) and all other Fatou components of f
are simply-connected. For the second claim, you may find it useful to arrange
∞ ∈ U and apply the Maximum Principle.

79. Let f : C → C be a polynomial map of degree d ≥ 2. Define the basin of
attraction of infinity by

A∞ = {z ∈ C : f ◦n(z)→∞ as n→∞}.
Show that A∞ ⊂ F (f) is open, contains {z : |z| > R} for a large R > 0,
and f−1(A∞) = A∞. Show that A∞ is in fact a connected component of F (f).
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Conclude that J = ∂A∞ and all other Fatou components of f (i.e., the bounded
ones) are simply-connected.

80. Let f ∈ Ratd with d ≥ 2. Suppose f has only a finite number k of Fatou
components. Show that k ≤ 2.

81. (Finite Blaschke products) This problem discusses a special class of rational
maps whose behavior is reminiscent of the simple maps z 7→ zd. Let f : D → D
be a proper holomorphic map of degree d.

(i) Show that f is a finite Blaschke product, that is,

f(z) = λ
d∏

j=1

(
z − aj
1− ajz

)
,

for some λ ∈ ∂D and (not necessarily distinct) a1, . . . , ad ∈ D. In particular,
f extends to a degree d rational map of the sphere.

(ii) Show that this rational map f commutes with the reflection z 7→ 1/z. Show
that z is a critical point of f iff 1/z is critical. Check that f has d−1 critical

points in D and hence the same number of critical points in ĈrD. Conclude
that f has no critical point on the unit circle.

(iii) Now let d ≥ 2. Show that either J(f) = ∂D or J(f) is a Cantor set in ∂D.
Give examples showing either case is possible. Conclude that f has one or
two Fatou components. What are the possible types of these components?

(iv) Still assuming d ≥ 2, suppose that f(0) = 0. Use Schwarz Lemma to show

that every orbit in D tends to 0, and hence every orbit in Ĉ r D tends to
∞. Conclude that J(f) = ∂D.

(v) Let f be as in (iv), so that J(f) = ∂D. Show that f : ∂D → ∂D is a d-
to-1 covering map which expands the Euclidean metric. More precisely, let
1 ≤ m ≤ d be the local degree of f at 0. Show that when |z| = 1, |f ′(z)| = m
if m = d, and |f ′(z)| > m if 1 ≤ m ≤ d− 1.

(vi) Let f be as in (iv). Show that the action of the expanding map f on ∂D
preserves Lebesgue measure on the circle and is ergodic with respect to it.
(Think of the harmonic extension of a suitable function defined on the circle.)

82. (Shrinking Lemma) Let f ∈ Ratd with d ≥ 2. Suppose U ⊂ Ĉ is a domain on
which a branch gn of f−n can be defined for every n ≥ 1. If U ∩ J(f) 6= ∅, show
that ‖g′n‖σ → 0 locally uniformly in U . Conclude that for every compact set
K ⊂ U , the spherical diameter of gn(K) tends to zero as n→∞.
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83. Use Shrinking Lemma to give another proof for the fact that indifferent points in
the Julia set as well as boundaries of Siegel disks and Herman rings are contained
in the postcritical set.

84. Recall that the action of a rational map f : Ĉ → Ĉ is ergodic if f−1(E) = E

implies E or ĈrE has measure zero. Use the classification of Fatou components

to prove that J(f) = Ĉ if f is ergodic.

85. Recall that if f ∈ Ratd with d ≥ 2, either J(f) = Ĉ and the action of f on
J(f) is ergodic, or distσ(f

◦n(z), P (f)) → 0 for almost every z ∈ J(f) (this is
“Ergodic or Attracting Theorem”).

(i) Show that if f is expanding, then J(f) has measure zero.

(ii) Let us say that f is geometrically finite if every critical point in J(f) has finite
orbit (and hence all the critical points in the Fatou set tend to attracting
or parabolic cycles). Generalizing (i), show that if f is geometrically finite,

then either J(f) = Ĉ or J(f) has measure zero.

86. Let f ∈ Ratd with d ≥ 2. Suppose all the critical points of f are strictly

preperiodic, i.e., they are not periodic but eventually map to periodic points.

Show that J(f) = Ĉ. As an example, f(z) = (i/2)(z + z−1) has critical points
at z = ±1 with critical orbits

±1 7→ ±i 7→ 0 7→ ∞ ª

so J(f) must be the entire sphere.

87. Give an example of a non-identity homeomorphism ϕ : C → C which satisfies
∂ϕ = 1 and ∂ϕ = 0 almost everywhere.

88. Show that a homeomorphism ϕ : Ĉ → Ĉ is quasiconformal iff there is a C > 0

such that for every quadruple (a, b, c, d) of distinct points in Ĉ,

dist(χ(a, b, c, d), χ(ϕ(a), ϕ(b), ϕ(c), ϕ(d))) ≤ C.

Here “dist” is the hyperbolic distance in Ĉ r {0, 1,∞}, and χ is the cross-ratio.
Show that the maximal dilatation K of ϕ and the constant C depend only on
each other.

89. Let X be a Riemann surface and G be a finite group of quasiconformal homeo-
morphismsX → X. Show that there exists a Riemann surface Y and a quasicon-
formal map ϕ : X → Y such that the conjugate group ϕ ◦G ◦ϕ−1 is a subgroup
of Aut(Y ). In other words, a finite group of quasiconformal maps acts as a group
of conformal maps if seen in an appropriate coordinate system. (This result can
be generalized to any group of uniformly K-quasiconformal homeomorphisms.)
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90. Let f : S2 → S2 be a finite order diffeomorphism. Show that there exists a
diffeomorphism ϕ : S2 → S2 such that the conjugate map ϕ ◦ f ◦ ϕ−1 is a rigid
rotation.

91. (Smale’s Theorem) Using the Measurable Riemann Mapping Theorem, show
that Diff+(S2) has a deformation retract onto SO(3). You may find it useful

to first retract Diff+(S2) onto the subgroup Aut(Ĉ) and then use problem 6 to

construct a deformation retract of Aut(Ĉ) onto SO(3).

92. Let µ be a Beltrami differential on Ĉ with ‖µ‖∞ < 1. Assume µ is symmetric

with respect to the unit circle ∂D, i.e., µ = I∗µ, where I(z) = 1/z. If ϕ : Ĉ → Ĉ
is the unique quasiconformal map which fixes 0, 1,∞ and satisfies ∂ϕ = µ ∂ϕ,
show that ϕ commutes with I so that ϕ(∂D) = ∂D.

93. Show that locally bounded Beltrami differentials are integrable. More precisely,
let X be a Riemann surface and µ be a measurable Beltrami differential on X
with the property that every point in X has a neighborhood U such that ‖µ‖U <
1. Prove that there exists a Riemann surface Y and a locally quasiconformal
homeomorphism ϕ : X → Y such that ∂ϕ = µ ∂ϕ. Moreover, ϕ is unique up
to postcomposition with a biholomorphism. (As a special case, it follows that
every continuous Beltrami differential is integrable.)

94. Let µ be a continuous Beltrami differential on D which is rotationally symmetric,
i.e., R∗θµ = µ for every rotation Rθ(z) = eiθz.

(i) Show that there is a locally quasiconformal homeomorphism ϕ : D → D
or C, satisfying ∂ϕ = µ ∂ϕ, which commutes with every rotation (so that
it has the form ϕ(reit) = ϕ(r)eit in polar coordinates). You can prove this
statement using the general theory, but it is instructive to verify it by solving
the Beltrami equation for ϕ directly.

(ii) As usual, let D = (1 + |µ|)(1 − |µ|) be the real dilatation of µ, which by
symmetry depends only on r = |z|. Show that the Riemann surface (D, µ)
is conformally isomorphic to D or C according as

lim
A→1−

∫ A

0.5

D(r)

r
dr

converges or diverges.


