Math 701 Problem Set 11

due Friday 12/13/2013

\mathfrak{M} and m will denote the σ-algebra of Lebesgue measurable sets in \mathbb{R} and Lebesgue measure, respectively.

Problem 1.

(i) Suppose $f, g: \mathbb{R} \rightarrow[-\infty,+\infty]$ are measurable. Show that the sets

$$
\{x \in \mathbb{R}: f(x)<g(x)\} \quad \text { and } \quad\{x \in \mathbb{R}: f(x)=g(x)\}
$$

are measurable.
(ii) Suppose $f_{n}: \mathbb{R} \rightarrow[-\infty,+\infty]$ is a sequence of measurable functions. Show that the set of points at which $\lim _{n \rightarrow \infty} f_{n}$ exists is measurable.

Problem 2. Let $C \subset[0,1]$ be the middle-thirds Cantor set and $f: C \rightarrow[0,1]$ be the standard surjection which sends ternary to binary expansions. f extends to a continuous non-decreasing map $f:[0,1] \rightarrow[0,1]$ which is constant on every gap of C (this is the so-called "Cantor function" or "Devil's staircase"). Let $g(x)=x+f(x)$. Show that g is continuous and strictly increasing, and $g(C) \subset[0,2]$ has measure 1 . Use this to prove that there are measurable subsets of C which map continuously to non-measurable sets (all such measurable sets are therefore non-Borel!).
Problem 3. Suppose $f \in L^{1}(\mathbb{R})$. Show that there is a constant $C>0$ such that for all $t>0$,

$$
m(\{x \in \mathbb{R}:|f(x)|>t\})<\frac{C}{t}
$$

Problem 4. The average value of $f \in L^{1}(\mathbb{R})$ over a set $E \in \mathfrak{M}$ of positive measure is defined by

$$
\bar{f}_{E}=\frac{1}{m(E)} \int_{E} f d m
$$

Prove that $\bar{f}_{E} \in[a, b]$ for every E if and only if $f(x) \in[a, b]$ for almost every $x \in \mathbb{R}$.
Problem 5. Suppose $f_{n}: \mathbb{R} \rightarrow[0,+\infty]$ are measurable, $f_{1} \geq f_{2} \geq f_{3} \geq \cdots \geq 0$, and $f_{n}(x) \rightarrow f(x)$ for all $x \in \mathbb{R}$. If $f_{1} \in L^{1}(\mathbb{R})$, show that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m=\int_{\mathbb{R}} f d m
$$

Show by an example that the condition $f_{1} \in L^{1}(\mathbb{R})$ cannot be dispensed with.
Problem 6. Suppose $f \in L^{1}(\mathbb{R})$. Show that for every $\varepsilon>0$ there is a $\delta>0$ such that $m(E)<\delta$ implies $\int_{E}|f| d m<\varepsilon$. (Hint: Proceed in one of the following ways: (1) Work with the sequence $f_{n}=\min \{|f|, n\}$ of bounded integrable functions on \mathbb{R} which converges monotonically to $|f|$; or (2) Suppose there is an $\varepsilon>0$ and sets E_{n} with $m\left(E_{n}\right)<1 / 2^{n}$ such that $\int_{E_{n}}|f| d m>\varepsilon$ for all n. Look at the integral of $|f|$ over $\bigcup_{k \geq n} E_{k}$ as $n \rightarrow \infty$ to reach a contradiction.)

