Math 701 Problem Set 3

due Friday 9/27/2013

Problem 1. Suppose E and F are closed sets in a metric space, $f: E \rightarrow Y$ and $g: F \rightarrow Y$ are continuous, and $f=g$ on $E \cap F$. Prove that the map $h: E \cup F \rightarrow Y$ defined by $h=f$ on E and $h=g$ on F is continuous. Show by an example that the assumption of E, F being closed is essential. (Hint: Verify that for every closed set $C \subset Y, h^{-1}(C)$ is closed in $E \cup F$.)

Problem 2. Let X be a metric space and $E \subset X$ be non-empty. Define the distance between $x \in X$ and E by

$$
\operatorname{dist}(x, E)=\inf _{p \in E} d(x, p)
$$

Show that $x \mapsto \operatorname{dist}(x, E)$ is uniformly continuous on X, and vanishes precisely on \bar{E}.
Problem 3. Show that balls in \mathbb{R}^{n} (with the standard metric) are connected. Give an example of a metric space in which there are disconnected balls.

Problem 4. Suppose U is an open and connected set in \mathbb{R}^{n}. Prove that U is path-connected. (Hint: Fix a base point $p_{0} \in U$ and let E be the set of all points in U that can be joined to p_{0} by a path in U. Show that E is both open and closed in U.)
Problem 5.
(i) Let f be a continuous map from a connected metric space X to a metric space Y. Show that the graph of f defined by

$$
\Gamma(f)=\{(x, y): y=f(x)\} \subset X \times Y
$$

is connected. Here on $X \times Y$ you can put any of the several equivalent metrics such as $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)$.
(ii) Show that the subset

$$
E=\left\{(x, y) \in \mathbb{R}^{2}: x>0 \text { and } y=\sin (1 / x)\right\} \cup\{(0, y):-1 \leq y \leq 1\}
$$

of the plane is connected but not path-connected.
(Hint: For (i), note that $\Gamma(f)$ is the image of X under the map $x \mapsto(x, f(x))$. For (ii), observe that E is the closure of a graph.)

Problem 6.

(i) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right|<+\infty$. Show that f is uniformly continuous on \mathbb{R}.
(ii) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, monotonic, and bounded. Show that f is uniformly continuous on \mathbb{R}.
(iii) Give an example of a bounded continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not uniformly continuous.

