Math 701 Problem Set 4

due Friday 10/4/2013

Problem 1. Suppose $-\infty<a<b<+\infty$ and $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous. Show that $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow b^{-}} f(x)$ exist.
Problem 2. Let X be a metric space.
(i) Suppose E, F are disjoint closed subsets of X. Show that there are disjoint open sets U, V in X such that $E \subset U$ and $F \subset V$.
(ii) Suppose p_{1}, \ldots, p_{n} are distinct points in X and a_{1}, \ldots, a_{n} are real numbers. Show that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f\left(p_{i}\right)=a_{i}$ for every $1 \leq i \leq n$.
(Hint: Use Urysohn's lemma for both parts. In (ii), first argue that there exists a continuous function on X which takes the value 1 at p_{i} and vanishes at p_{j} for all $j \neq i$.)
Problem 3. A subset of \mathbb{R} is called a $G_{\boldsymbol{\delta}}$-set if it is a countable intersection of open sets.
(i) Show that every closed set in \mathbb{R} is a G_{δ}-set.
(ii) Show that $\mathbb{R} \backslash \mathbb{Q}$, the set of irrational numbers, is a $G_{\boldsymbol{\delta}}$-set.
(iii) By contrast, show that \mathbb{Q} is not a G_{δ}-set.
(Hint: For (i), consider ε-neighborhoods. For (iii), use Baire's theorem.)
Problem 4. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, let $C(f)$ denote the set of points at which f is continuous.
(i) Prove that

$$
C(f)=\bigcap_{n \geq 1}\left\{x \in \mathbb{R}: \operatorname{diam} f((x-r, x+r))<\frac{1}{n} \text { for some } r>0\right\} .
$$

In particular, $C(f)$ is always a G_{δ}-set.
(ii) Conclude that there is no $f: \mathbb{R} \rightarrow \mathbb{R}$ with $C(f)=\mathbb{Q}$.
(iii) By contrast, give an example $f: \mathbb{R} \rightarrow \mathbb{R}$ with $C(f)=\mathbb{R} \backslash \mathbb{Q}$.

Problem 5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\lim _{n \rightarrow \infty} f(n x)=0$ for every $x \in \mathbb{R}$. Show that $\lim _{x \rightarrow \infty} f(x)=0$. (Hint: For a given $\varepsilon>0$, apply Baire's theorem to the sets

$$
\left.F_{k}=\{x \in \mathbb{R}:|f(n x)| \leq \varepsilon \text { for all } n>k\} \quad k=1,2,3, \ldots\right)
$$

Problem 6. Suppose X is a complete metric space and \mathscr{F} is a family of continuous functions $X \rightarrow \mathbb{R}$. Assume \mathscr{F} is a pointwise bounded family in the following sense: For each $x \in X$, there is a constant $M_{x}>0$ such that $|f(x)| \leq M_{x}$ for every $f \in \mathscr{F}$. Show that there is a non-empty open set $U \subset X$ and a number $M>0$ such that $|f(x)| \leq M$ for every $f \in \mathscr{F}$ and every $x \in U$. This is often known as the principle of uniform boundedness. (Hint: Use Baire's theorem.)

