Math 701 Problem Set 5

due Friday 10/11/2013

Problem 1. Show that every subset of a separable metric space is separable.
Problem 2. Give an example of a metric space which has a countable perfect subset.
Problem 3. Let X be a complete separable metric space. For a set $E \subset X$, we use the notation E^{*} for the set of all condensation points of E, i.e., all points $p \in X$ such that $B(p, r) \cap E$ is uncountable for every $r>0$.
(i) Show that if $P \subset X$ is perfect, then $P=P^{*}$.
(ii) Show that for any closed set $E \subset X$, the Cantor-Bendixson decomposition $E=$ $P \cup C$ into a perfect set P and an at most countable set C is unique.
(Hint: For (i), use the fact that every perfect set in X is uncountable by Baire's theorem. If $p \in P \backslash P^{*}$, show that $B(p, r) \cap P$ would have an isolated point for some $r>0$, which would be an isolated point of P. For (ii), take any decomposition $E=P \cup C$ and use (i) to show that necessarily $P=E^{*}$ and $C=E \backslash E^{*}$.)

Problem 4.
(i) Give an explicit example of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property $\left|f^{\prime}(x)\right|<1$ for all $x \in \mathbb{R}$ which nevertheless has no fixed point.
(ii) Starting with the number 0 on my calculator screen, I keep pressing the COS key over and over again (my calculator is always set in radians!). What happens and why?

Problem 5. Let f be a self-map of a complete metric space X. Suppose for some $k \geq 2$ the k-fold iterate

$$
f^{\circ k}=\underbrace{f \circ \cdots \circ f}_{k \text { times }}: X \rightarrow X
$$

is a contraction. Show that f has a unique fixed point. (Note that we do not even assume f to be continuous. For example, $f:[0,2] \rightarrow[0,2]$ which takes the value 2 on $[0,1)$ and 1 on [1,2] is discontinuous, but the iterate $f^{\circ 2}$ is the constant function 1, clearly a contraction.)
Problem 6. Suppose X is a complete metric space. Denote the unique fixed point of a contraction $f: X \rightarrow X$ by p_{f}. Show that the assignment $f \mapsto p_{f}$ is continuous in the following sense: Given f and $\varepsilon>0$, there is a $\delta>0$ such that if $g: X \rightarrow X$ is any contraction with $\sup _{x \in X} d(f(x), g(x))<\delta$, then $d\left(p_{f}, p_{g}\right)<\varepsilon$. (Hint: Estimate $d\left(f^{\circ n}(x), g^{\circ n}(x)\right)$ inductively on n; the choice $\delta=\varepsilon(1-\lambda)$ will do, where $\lambda \in[0,1)$ is the contraction factor of f.)

