Math 701 Problem Set 6

due Friday 10/25/2013

The letter C will be reserved for the standard middle-thirds Cantor set in \mathbb{R}.

Problem 1. A non-empty compact, perfect, totally disconnected metric space is called a Cantor space. All Cantor spaces are homeomorphic to the standard Cantor set C. Show that if X is a Cantor space and $Y \neq \emptyset$ is a clopen (=closed and open) subset of X, then Y is a Cantor space, so X and Y are homeomorphic.
Problem 2. Show that C is homeomorphic to $C \times C$. (Hint: Check that $C \times C$ is a Cantor space.)
Problem 3. Prove that the arithmetical difference set

$$
C-C=\{x-y: x, y \in C\}
$$

is the interval $[-1,1]$. (Hint: For each $t \in[-1,1]$, use geometry to verify that the line $y=x-t$ intersects $C_{n} \times C_{n}$ for every n. Here C_{n} is the level- n approximation of C consisting of 2^{n} intervals of length $1 / 3^{n}$.)
Problem 4. Show that C is homogeneous in the following sense: Given any pair $p, q \in C$ there exists a homeomorphism $f: C \rightarrow C$ such that $f(p)=q$. This shows in particular that the "endpoints" of C (such as $0,1,1 / 3$ or $8 / 9$) enjoy no topological distinction whatsoever.
Problem 5. Let $\varphi: C \rightarrow \Sigma_{2}$ be the homeomorphism which assigns to each $x \in C$ its unique dyadic address $\varphi(x)=s_{1} s_{2} s_{3} \cdots$ determined by

$$
\bigcap_{n \geq 1} I_{S_{1} \cdots s_{n}}=\{x\} .
$$

Show that if $0<\alpha<\log 2 / \log 3$, the map φ is Hölder of exponent α. That is, there exists an $M>0$ such that

$$
d(\varphi(x), \varphi(y)) \leq M|x-y|^{\alpha} \quad \text { if } x, y \in C
$$

Problem 6. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the shift map defined by

$$
\sigma\left(s_{1} s_{2} s_{3} \cdots\right)=s_{2} s_{3} s_{4} \cdots
$$

(i) Verify that σ is continuous and 2-to-1.
(ii) How many fixed points does σ have? How many periodic points of period 2? Of period 3? Of a prime period? Of a general period?
(iii) Show that periodic points of σ are dense in Σ_{2}, that is, given $s \in \Sigma_{2}$ and $\varepsilon>0$ there is a $t \in \Sigma_{2}$ which is fixed by some iterate $\sigma^{\circ k}$, such that $d(s, t)<\varepsilon$.
(iv) Show that there are points $s \in \Sigma_{2}$ whose orbit $\left\{s, \sigma(s), \sigma^{\circ 2}(s), \sigma^{\circ 3}(s), \ldots\right\}$ is dense in Σ_{2}.
(v) Under the homeomorphism $\varphi: C \rightarrow \Sigma_{2}$, the conjugate map $f=\varphi^{-1} \circ \sigma \circ \varphi$: $C \rightarrow C$ has similar orbit properties as σ. Can you find an explicit formula for f ?

