Math 702 Problem Set 10 due Friday 5/2/2014

Unless otherwise stated, X is a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\cdot\|$. The null-space and range of a linear map $T : X \to X$ are denoted by N(T) and R(T).

Problem 1. This exercise proves a family of polarization identities in inner product spaces.

(i) Let $\zeta = e^{2\pi i/n}$, where $n \ge 1$ is an integer. Show that

$$\frac{1}{n}\sum_{k=1}^{n}\zeta^{kj} = \begin{cases} 1 & \text{if } j = 0\\ 0 & \text{if } 1 \le j \le n-1. \end{cases}$$

(ii) Use (i) to show that for every x, y in an inner product space,

$$\langle x, y \rangle = \frac{1}{n} \sum_{k=1}^{n} ||x + \zeta^{k} y||^{2} \zeta^{k}$$

provided that $n \ge 3$.

(iii) Prove the following continuous version of the above identity:

$$\langle x, y \rangle = \frac{1}{2\pi} \int_0^{2\pi} \|x + e^{it}y\|^2 e^{it} dt.$$

Problem 2. Assuming Y is a closed subspace of X, prove the following statements:

- (i) $(Y^{\perp})^{\perp} = Y$.
- (ii) The natural map $Y^{\perp} \to X/Y$ given by $z \mapsto z + Y$ is an isometric isomorphism (recall that the norm on X/Y is defined by $||x + Y|| = \inf_{y \in Y} ||x + y||$).
- (iii) If $x \in X$,

$$\min\{||x - y|| : y \in Y\} = \max\{|\langle x, z \rangle| : z \in Y^{\perp}, ||z|| = 1\}.$$

Problem 3. Suppose f is a non-zero bounded linear functional on X. Prove the following statements:

- (i) $(\ker f)^{\perp}$ has dimension 1.
- (ii) ker $f = \ker g$ for a bounded linear functional g if and only if $f = \lambda g$ for some scalar λ .

Problem 4. Take advantage of the fact that $L^{2}[-1, 1]$ is a Hilbert space to compute

$$\min_{a,b,c\in\mathbb{C}} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 \, dx$$

and

$$\max_{g} \Big| \int_{-1}^{1} x^3 g(x) \, dx \Big|,$$

where $g \in L^2[-1, 1]$ is subject to the restrictions

$$\int_{-1}^{1} g(x) \, dx = \int_{-1}^{1} x g(x) \, dx = \int_{-1}^{1} x^2 g(x) \, dx = 0 \quad \text{and} \quad \int_{-1}^{1} |g(x)|^2 \, dx = 1.$$

Problem 5. Let $T : X \to X$ be a bounded linear map.

(i) Show that there is a unique bounded linear map $T^*: X \to X$, called the *adjoint* of *T*, which satisfies

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

for every $x, y \in X$.

(ii) Verify the relations

$$||T^*|| = ||T||$$
 and $||TT^*|| = ||T^*T|| = ||T||^2$.

(iii) Show that $N(T^*) = R(T)^{\perp}$ and $N(T) = R(T^*)^{\perp}$.

Problem 6.

- (i) Let Y be a closed subspace of X and $P : X \to X$ be the orthogonal projection onto Y (so R(P) = Y and $N(P) = Y^{\perp}$). Show that $P = P^2 = P^*$ and ||P|| = 1.
- (ii) Let $P : X \to X$ be a bounded linear map such that $P = P^2 = P^*$. Show that R(P) is a closed subspace of X and P is the orthogonal projection onto R(P).

Problem 7. (Bonus) Suppose $T : X \to X$ is linear and

$$\langle T(x), y \rangle = \langle x, T(y) \rangle$$

for every $x, y \in X$. Show that T is bounded (hence $T = T^*$).