Math 702 Problem Set 10
 due Friday 5/2/2014

Unless otherwise stated, X is a complex Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. The null-space and range of a linear map $T: X \rightarrow X$ are denoted by $N(T)$ and $R(T)$.

Problem 1. This exercise proves a family of polarization identities in inner product spaces.
(i) Let $\zeta=e^{2 \pi i / n}$, where $n \geq 1$ is an integer. Show that

$$
\frac{1}{n} \sum_{k=1}^{n} \zeta^{k j}= \begin{cases}1 & \text { if } j=0 \\ 0 & \text { if } 1 \leq j \leq n-1\end{cases}
$$

(ii) Use (i) to show that for every x, y in an inner product space,

$$
\langle x, y\rangle=\frac{1}{n} \sum_{k=1}^{n}\left\|x+\zeta^{k} y\right\|^{2} \zeta^{k}
$$

provided that $n \geq 3$.
(iii) Prove the following continuous version of the above identity:

$$
\langle x, y\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x+e^{i t} y\right\|^{2} e^{i t} d t
$$

Problem 2. Assuming Y is a closed subspace of X, prove the following statements:
(i) $\left(Y^{\perp}\right)^{\perp}=Y$.
(ii) The natural map $Y^{\perp} \rightarrow X / Y$ given by $z \mapsto z+Y$ is an isometric isomorphism (recall that the norm on X / Y is defined by $\|x+Y\|=\inf _{y \in Y}\|x+y\|$).
(iii) If $x \in X$,

$$
\min \{\|x-y\|: y \in Y\}=\max \left\{|\langle x, z\rangle|: z \in Y^{\perp},\|z\|=1\right\} .
$$

Problem 3. Suppose f is a non-zero bounded linear functional on X. Prove the following statements:
(i) $(\operatorname{ker} f)^{\perp}$ has dimension 1 .
(ii) $\operatorname{ker} f=\operatorname{ker} g$ for a bounded linear functional g if and only if $f=\lambda g$ for some scalar λ.

Problem 4. Take advantage of the fact that $L^{2}[-1,1]$ is a Hilbert space to compute

$$
\min _{a, b, c \in \mathbb{C}} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

and

$$
\max _{g}\left|\int_{-1}^{1} x^{3} g(x) d x\right|
$$

where $g \in L^{2}[-1,1]$ is subject to the restrictions

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0 \quad \text { and } \quad \int_{-1}^{1}|g(x)|^{2} d x=1
$$

Problem 5. Let $T: X \rightarrow X$ be a bounded linear map.
(i) Show that there is a unique bounded linear map $T^{*}: X \rightarrow X$, called the adjoint of T, which satisfies

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle
$$

for every $x, y \in X$.
(ii) Verify the relations

$$
\left\|T^{*}\right\|=\|T\| \quad \text { and } \quad\left\|T T^{*}\right\|=\left\|T^{*} T\right\|=\|T\|^{2}
$$

(iii) Show that $N\left(T^{*}\right)=R(T)^{\perp}$ and $N(T)=R\left(T^{*}\right)^{\perp}$.

Problem 6.

(i) Let Y be a closed subspace of X and $P: X \rightarrow X$ be the orthogonal projection onto Y (so $R(P)=Y$ and $N(P)=Y^{\perp}$). Show that $P=P^{2}=P^{*}$ and $\|P\|=1$.
(ii) Let $P: X \rightarrow X$ be a bounded linear map such that $P=P^{2}=P^{*}$. Show that $R(P)$ is a closed subspace of X and P is the orthogonal projection onto $R(P)$.

Problem 7. (Bonus) Suppose $T: X \rightarrow X$ is linear and

$$
\langle T(x), y\rangle=\langle x, T(y)\rangle
$$

for every $x, y \in X$. Show that T is bounded (hence $T=T^{*}$).

