Math 702 Problem Set 11

due Friday 5/9/2014

Unless otherwise stated, X is a complex Hilbert space with the inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$.

Problem 1. Let (X, μ) be a measure space in which there are disjoint measurable sets of finite positive measure. Show that if $p \neq 2$, the L^{p}-norm on X does not satisfy the parallelogram law

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2} .
$$

Conclude that the Banach space $L^{p}(\mu)$ is not a Hilbert space.
Problem 2. Let $\left\{x_{i}\right\}$ be a sequence of orthogonal vectors in X. Show that the following conditions are equivalent:
(i) $\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}$ converges;
(ii) $\sum_{i=1}^{\infty} x_{i}$ converges in X;
(iii) $\sum_{i=1}^{\infty}\left\langle x_{i}, y\right\rangle$ converges for every $y \in X$.
(Hint: The Pythagorean theorem is helpful here. For (iii) \Longrightarrow (i), apply the uniform boundedness principle to the functionals $f_{n}(y)=\sum_{i=1}^{n}\left\langle y, x_{i}\right\rangle$.)

Problem 3. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X. Prove the following statements:
(i) If $\left\|x_{n}\right\| \leq 1,\left\|y_{n}\right\| \leq 1$, and $\left\langle x_{n}, y_{n}\right\rangle \rightarrow 1$, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$.
(ii) If $x_{n} \xrightarrow{\mathrm{w}} x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$.
(Hint: For (ii), use Riesz's theorem according to which every element of X^{*} is of the form $x \mapsto\langle x, y\rangle$ for some $y \in X$.)

Problem 4. Let $x \in X$ and $\hat{x}_{\alpha}=\left\langle x, u_{\alpha}\right\rangle$ be the Fourier coefficients of x with respect to a given orthonormal basis $\left\{u_{\alpha}\right\}$ for X. Prove the following statements:
(i) The set $\left\{\alpha: \hat{x}_{\alpha} \neq 0\right\}$ is at most countable.
(ii) If $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}$ is the set in (i),

$$
x=\sum_{n} \hat{x}_{\alpha_{n}} u_{\alpha_{n}}
$$

Thus, the "Fourier series" of x converges to x in the norm topology of X.
Problem 5. Recall that an isomorphism between two Hilbert spaces is a bijective linear map which is inner product-preserving (equivalently, norm-preserving).
(i) Show that $\ell^{2}(A)$ is isomorphic to $\ell^{2}(B)$ if and only if A and B have the same cardinality.
(ii) Show that a Hilbert space is separable if and only if it has an orthonormal basis which is at most countable.
(iii) Conclude that every infinite-dimensional separable Hilbert space is isomorphic to $\ell^{2}=\ell^{2}(\mathbb{N})$.

Problem 6. Recall that $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ and $L^{2}(\mathbb{T})$ is the space of all measurable functions on \mathbb{T} (identified with 1-periodic functions on \mathbb{R}) such that $\|f\|_{2}=\left(\int_{0}^{1}|f(t)|^{2} d t\right)^{1 / 2}<\infty$. Let $0<\alpha<1$ be irrational and $f \in L^{2}(\mathbb{T})$ satisfy $f(t+\alpha)=f(t)$ for a.e. $t \in \mathbb{T}$. Show that f is constant a.e. on \mathbb{T}.

