Math 702 Problem Set 12

Throughout \mathfrak{M} is a σ -algebra in a set X. As usual, the acronym AC stands for "absolutely continuous."

Problem 1. Suppose μ , λ are complex measures on \mathfrak{M} , and $E \in \mathfrak{M}$. Prove the following statements:

Problem 2. Consider the relation \ll on the space of finite positive measures on \mathfrak{M} .

(i) Prove that \ll is transitive, and if $\mu \ll \lambda$ and $\lambda \ll \nu$, then the chain rule

$$\frac{d\mu}{d\nu} = \frac{d\mu}{d\lambda} \frac{d\lambda}{d\nu}$$

holds ν -a.e. in X.

(ii) If $\mu \ll \lambda$ and $\lambda \ll \mu$ (such pairs of measures are said to be *equivalent*), how do the Radon-Nikodym derivatives $d\mu/d\lambda$ and $d\lambda/d\mu$ relate?

Problem 3. Let *m* and μ denote Lebesgue measure and the counting measure on \mathbb{R} , respectively.

- (i) Show that despite $m \ll \mu$ there is no f for which $dm = f d\mu$.
- (ii) Show that μ has no Lebesgue decomposition with respect to m.

Why don't these failures contradict the Lebesgue-Radon-Nikodym theorem?

Problem 4. Prove that the Jordan decomposition of a signed measure is minimal: If ν is a signed measure on \mathfrak{M} and if $\nu = \mu - \lambda$ for some finite positive measures μ , λ on \mathfrak{M} , then $\mu \geq \nu^+$ and $\lambda \geq \nu^-$. (Hint: Use the Hahn decomposition theorem.)

Problem 5. Suppose $f : [a, b] \to \mathbb{R}$ is AC and $f' \in L^p[a, b]$ for some 1 . Show that <math>f is Hölder continuous of exponent 1/q, where 1/p + 1/q = 1.

Problem 6. Construct a homeomorphism $f : [0, 1] \rightarrow [0, 1]$ such that f'(x) = 0 for almost every $x \in [0, 1]$. (Hint: You may want to think about an infinite sum of suitably scaled Cantor functions.)

Problem 7. Show that if f, g are AC on [a, b], so is their product fg. Use this to prove the integration by parts formula

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx.$$

Problem 8. Recall that a function $f : [0,1] \to \mathbb{R}$ is *M*-Lipschitz if $|f(x) - f(y)| \le M|x - y|$ for all $x, y \in [0,1]$. Prove that f is *M*-Lipschitz if and only if there exists a sequence $\{f_n\}$ of continuously differentiable functions defined on [0,1] such that

- (i) $|f'_n(x)| \le M$ for all n and all $x \in [0, 1]$, and
- (ii) $f_n(x) \to f(x)$ for all $x \in [0, 1]$ as $n \to \infty$.