Math 702 Problem Set 12

Throughout \mathfrak{M} is a σ-algebra in a set X. As usual, the acronym AC stands for "absolutely continuous."

Problem 1. Suppose μ, λ are complex measures on \mathfrak{M}, and $E \in \mathfrak{M}$. Prove the following statements:
(i) $|\mu+\lambda|(E) \leq|\mu|(E)+|\lambda|(E)$.
(ii) $|\mu|(E)=\sup \left\{\sum_{i=1}^{n}\left|\mu\left(E_{i}\right)\right|: E_{1}, \ldots, E_{n}\right.$ is a finite partition of $\left.E\right\}$.

Problem 2. Consider the relation \ll on the space of finite positive measures on \mathfrak{M}.
(i) Prove that \ll is transitive, and if $\mu \ll \lambda$ and $\lambda \ll \nu$, then the chain rule

$$
\frac{d \mu}{d \nu}=\frac{d \mu}{d \lambda} \frac{d \lambda}{d \nu}
$$

holds v-a.e. in X.
(ii) If $\mu \ll \lambda$ and $\lambda \ll \mu$ (such pairs of measures are said to be equivalent), how do the Radon-Nikodym derivatives $d \mu / d \lambda$ and $d \lambda / d \mu$ relate?

Problem 3. Let m and μ denote Lebesgue measure and the counting measure on \mathbb{R}, respectively.
(i) Show that despite $m \ll \mu$ there is no f for which $d m=f d \mu$.
(ii) Show that μ has no Lebesgue decomposition with respect to m.

Why don't these failures contradict the Lebesgue-Radon-Nikodym theorem?
Problem 4. Prove that the Jordan decomposition of a signed measure is minimal: If v is a signed measure on \mathfrak{M} and if $v=\mu-\lambda$ for some finite positive measures μ, λ on \mathfrak{M}, then $\mu \geq v^{+}$and $\lambda \geq v^{-}$. (Hint: Use the Hahn decomposition theorem.)

Problem 5. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is AC and $f^{\prime} \in L^{p}[a, b]$ for some $1<p<\infty$. Show that f is Hölder continuous of exponent $1 / q$, where $1 / p+1 / q=1$.

Problem 6. Construct a homeomorphism $f:[0,1] \rightarrow[0,1]$ such that $f^{\prime}(x)=0$ for almost every $x \in[0,1]$. (Hint: You may want to think about an infinite sum of suitably scaled Cantor functions.)

Problem 7. Show that if f, g are AC on $[a, b]$, so is their product $f g$. Use this to prove the integration by parts formula

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Problem 8. Recall that a function $f:[0,1] \rightarrow \mathbb{R}$ is M-Lipschitz if $|f(x)-f(y)| \leq$ $M|x-y|$ for all $x, y \in[0,1]$. Prove that f is M-Lipschitz if and only if there exists a sequence $\left\{f_{n}\right\}$ of continuously differentiable functions defined on $[0,1]$ such that
(i) $\left|f_{n}^{\prime}(x)\right| \leq M$ for all n and all $x \in[0,1]$, and
(ii) $f_{n}(x) \rightarrow f(x)$ for all $x \in[0,1]$ as $n \rightarrow \infty$.

