Math 702 Problem Set 3

due Friday 2/28/2014

Unless otherwise stated, (X, \mathfrak{M}, μ) is a given measure space.
Problem 1. Suppose $\mu(X)<+\infty$ and $f_{n}: X \rightarrow \mathbb{C}$ is a sequence of measurable functions. Show that there is a sequence $\left\{c_{n}\right\}$ of positive numbers such that $c_{n} f_{n} \rightarrow 0$ a.e. in X. (Hint: For each n there is a large enough $\alpha_{n}>0$ such that $\mu\left(\left\{x \in X:\left|f_{n}(x)\right|>\alpha_{n}\right\}\right)<1 / 2^{n}$.)
Problem 2. Let $f \in L^{1}(\mu)$. Show that for every $\varepsilon>0$ there is a $\delta>0$ such that $\mu(E)<\delta$ implies $\int_{E}|f| d \mu<\varepsilon$. (Hint: Proceed in one of the following ways: (1) Work with the sets $A_{n}=\{x \in X:|f(x)|>n\}$ and use the fact that $\int_{A_{n}}|f| d \mu \rightarrow 0$ as $n \rightarrow \infty$; or (2) Suppose there is an $\varepsilon>0$ and sets E_{n} with $\mu\left(E_{n}\right)<1 / 2^{n}$ such that $\int_{E_{n}}|f| d \mu>\varepsilon$ for all n. Look at the integral of $|f|$ over $\bigcup_{k \geq n} E_{k}$ and let $n \rightarrow \infty$ to reach a contradiction.)
Problem 3. (Integrability as summability) Let $f: X \rightarrow \mathbb{C}$ be measurable and define $A_{n}=\left\{x \in X: 2^{n}<|f(x)| \leq 2^{n+1}\right\}$ for $n \in \mathbb{Z}$. Show that

$$
f \in L^{1}(\mu) \quad \text { if and only if } \sum_{n=-\infty}^{\infty} 2^{n} \mu\left(A_{n}\right)<+\infty
$$

Problem 4. Suppose $f_{n}, f \in L^{1}(\mu), f_{n} \rightarrow f$ a.e. on X, and $\int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu$. Prove that $\int_{E} f_{n} d \mu \rightarrow \int_{E} f d \mu$ for every measurable set $E \subset X$. (Hint: It suffices to consider the case where f_{n}, f are positive.)

Problem 5. (Integrals depending on a real parameter) Let I be an open interval in \mathbb{R} and $f: X \times I \rightarrow \mathbb{R}$ be a function such that $f(\cdot, t): X \rightarrow \mathbb{R}$ is integrable for each $t \in I$. Define $F: I \rightarrow \mathbb{R}$ by

$$
F(t)=\int_{X} f(x, t) d \mu .
$$

(i) Suppose $f(x, \cdot): I \rightarrow \mathbb{R}$ is continuous for all $x \in X$ and there is a $g \in L^{1}(\mu)$ such that $|f(x, t)| \leq g(x)$ for all $(x, t) \in X \times I$. Show that F is continuous on I.
(ii) Suppose $f(x, \cdot): I \rightarrow \mathbb{R}$ is differentiable for all $x \in X$ and there is a $g \in L^{1}(\mu)$ such that $|(\partial f / \partial t)(x, t)| \leq g(x)$ for all $(x, t) \in X \times I$. Show that F is differentiable on I and

$$
\frac{d F}{d t}=\int_{X} \frac{\partial f}{\partial t}(x, t) d \mu \quad(t \in I) .
$$

(Hint: For (ii), take any sequence $t_{n} \rightarrow t$ in I and apply the dominated convergence theorem to the sequence of measurable functions $x \mapsto\left(f\left(x, t_{n}\right)-f(x, t)\right) /\left(t_{n}-t\right)$.)

Problem 6. Let $\mu(X)<+\infty$. The average value of $f \in L^{1}(\mu)$ over a measurable set E with $\mu(E)>0$ is defined by

$$
f_{E}=\frac{1}{\mu(E)} \int_{E} f d \mu
$$

Let $T \subset \mathbb{C}$ be non-empty and closed.
(i) If $f_{E} \in T$ for every E, show that $f(x) \in T$ for a.e. $x \in X$.
(ii) Show by an example that $f(x) \in T$ for a.e. $x \in X$ does not imply $f_{E} \in T$ for every E.
(iii) (Bonus) What geometric property of T will guarantee the implication

$$
f(x) \in T \text { for a.e. } x \in X \Longrightarrow f_{E} \in T \text { for every } E \text { ? }
$$

Prove your claim.
(Hint for (i): Express the open set $\mathbb{C} \backslash T$ as a countable union of closed disks D_{n} and show $f^{-1}\left(D_{n}\right)$ has measure zero for all n.)

