Math 702 Problem Set 5 due Friday 3/14/2014

Throughout *m* denotes Lebesgue measure on \mathbb{R}^d . The space $L^1(m)$ of Lebesgue integrable functions on \mathbb{R}^d is denoted more traditionally by $L^1(\mathbb{R}^d)$.

Problem 1. Find, with justification, the limits

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} dx \quad \text{and} \quad \lim_{n \to \infty} \int_{-\infty}^\infty \frac{n \sin(x/n)}{x(x^2 + 1)} dx.$$

Problem 2. Consider the function $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$, where

$$f(x) = \begin{cases} x^{-1/2} & \text{if } x \in (0,1) \\ 0 & \text{if } x \notin (0,1). \end{cases}$$

and $\{r_n\}$ is any enumeration of \mathbb{Q} . Show that $g \in L^1(\mathbb{R})$ so $g < +\infty$ a.e., but g is unbounded on every interval.

Problem 3.

- (i) For each $0 < \varepsilon < 1$ construct an open dense set $U \subset [0, 1]$ such that $m(U) = \varepsilon$.
- (ii) Construct a Borel set $E \subset [0, 1]$ such that

$$0 < m(E \cap I) < m(I)$$

for every interval $I \subset [0, 1]$.

(Hint: For (i), think of fat Cantor sets. For (ii), construct E as the intersection of a decreasing sequence of suitably chosen open dense sets.)

Problem 4.

- (i) Let $E \subset \mathbb{R}^d$. Show that m(E) = 0 iff for every $\varepsilon > 0$ there are countably many open (Euclidean) balls $\{B(x_n, r_n)\}$ such that $E \subset \bigcup B(x_n, r_n)$ and $\sum r_n^d < \varepsilon$.
- (ii) Suppose $f : \mathbb{R}^d \to \mathbb{R}^d$ is a Lipschitz map, i.e., there is an M > 0 such that

$$||f(x) - f(y)|| \le M ||x - y|| \quad \text{for all } x, y \in \mathbb{R}^d.$$

Show that m(f(E)) = 0 whenever m(E) = 0.

Problem 5. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is Lebesgue measurable. Show that there are Borel maps $g, h : \mathbb{R}^d \to \mathbb{R}$ such that $g(x) \le f(x) \le h(x)$ for every $x \in \mathbb{R}^d$ and g(x) = f(x) = h(x) for a.e. $x \in \mathbb{R}^d$. (Hint: It suffices to assume $f \ge 0$. Treat the case of positive simple functions first.)

Problem 6. Give an example of a translation-invariant Borel measure on \mathbb{R}^d that is not a multiple of Lebesgue measure *m*. Why doesn't your example violate the uniqueness theorem that we proved for *m*?

Problem 7. (Bonus) The *support* of a Borel measure μ on a metric space X is defined by

 $supp(\mu) = \{x \in X : \mu(B(x, r)) > 0 \text{ for every } r > 0\}.$

- (i) If X is separable, show that $supp(\mu)$ is the smallest closed set in X whose complement has measure zero. In particular, $supp(\mu)$ is non-empty (unless $\mu = 0$).
- (ii) Show that every non-empty closed set in \mathbb{R}^d is the support of a Radon measure.

(Hint for (ii): Given a non-empty closed set in \mathbb{R}^d , choose a countable dense subset of it, use this subset to define a positive linear functional on $\mathscr{C}_c(\mathbb{R}^d)$, and apply the Riesz representation theorem.)